Biochar (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Biochar" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
57th place
4th place
149th place
80th place
332nd place
685th place
2,569th place
766th place
610th place
265th place
234th place
147th place
120th place
178th place
5,558th place
low place
low place
low place
low place
841st place
low place
low place
7,583rd place
low place
low place
low place
1,261st place
71st place
low place
7,389th place
4th place
12th place
438th place
1,120th place
1,248th place
778th place
low place
low place
605th place
35th place
857th place
208th place
222nd place
129th place
3,507th place
203rd place
1,778th place
1,866th place
low place
low place
274th place
223rd place
5,901st place
324th place
low place
5,725th place
1,031st place
161st place
921st place
1,396th place

acs.org

pubs.acs.org

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology 44:1247-1253.[17]

archives-ouvertes.fr

hal.archives-ouvertes.fr

  • Jean-François Ponge, Jean André, Nicolas Bernier et Christiane Gallet, « La régénération naturelle, connaissances actuelles: le cas de l'épicéa en forêt de Macot (Savoie) », Revue forestière française, AgroParisTech, 1994, 46 (1), pp.25-45.,‎ (lire en ligne)

biochar-international.org

  • Winsley P (2007) Biochar and bioenergy production for climate change mitigation. New Zealand Science Review 64:5-10 [27]

canalplus.com

leseclaireurs.canalplus.com

cornell.edu

css.cornell.edu

  • Solomon D, Lehmann J, Thies J, Schäfer T, Liang B, Kinyangi J, Neves E, Petersen J, Luizão F, Skjemstad J (2007) Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 71:2285-2286.[3]
  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Vasconcelos de Macêdo JL, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil (en) 291: 275-290.[4]
  • Lehmann J, da Silva JP Jr, Rondon M, Cravo MdS, Greenwood J, Nehls T, Steiner C, Glaser B (2002) Slash and char: a feasible alternative for soil fertility management in the central Amazon? In: Soil science: confronting new realities in the 21st century, Transactions of the 17th World Congress of Soil Science, Bangkok, Thailand, 14-21 août 2002, Symposium Nr 13, Paper Nr 449, 12 pp.[7]
  • Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with Biochar sequestration and pyrolysis bioenergy production. Environmental Science and Technology 42:4152-4158.[22]
  • [25], Lehmann, Johannes
  • Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5:381-387 [26]
  • Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility in Soils 43:699-708.[28]

doi.org

dx.doi.org

doi.org

  • Danlian Huang, Linshan Liu, Guangming Zeng et Piao Xu, « The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment », Chemosphere, vol. 174,‎ , p. 545–553 (ISSN 0045-6535, DOI 10.1016/j.chemosphere.2017.01.130, lire en ligne, consulté le )
  • Luke Beesley et Marta Marmiroli, « The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar », Environmental Pollution, vol. 159, no 2,‎ , p. 474–480 (ISSN 0269-7491, DOI 10.1016/j.envpol.2010.10.016, lire en ligne, consulté le ).
  • Yosuke Yanai, Koki Toyota et Masanori Okazaki, « Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments », Soil Science and Plant Nutrition, vol. 53, no 2,‎ , p. 181–188 (ISSN 0038-0768, DOI 10.1111/j.1747-0765.2007.00123.x, lire en ligne, consulté le )

ecologie.gouv.fr

elsevier.com

linkinghub.elsevier.com

esajournals.org

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs 18:81-115.[8]

futura-sciences.com

informaworld.com

  • Samkutty PJ, Gough RH (2002) Filtration treatment of dairy processing wastewater. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering 37:195-199.[29]

ipcc.ch

issn.org

portal.issn.org

  • Danlian Huang, Linshan Liu, Guangming Zeng et Piao Xu, « The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment », Chemosphere, vol. 174,‎ , p. 545–553 (ISSN 0045-6535, DOI 10.1016/j.chemosphere.2017.01.130, lire en ligne, consulté le )
  • (en) Johannes Lehmann, « A handful of carbon », Nature, vol. 447, no 7141,‎ , p. 143–144 (ISSN 1476-4687, DOI 10.1038/447143a, lire en ligne, consulté le )
  • Luke Beesley et Marta Marmiroli, « The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar », Environmental Pollution, vol. 159, no 2,‎ , p. 474–480 (ISSN 0269-7491, DOI 10.1016/j.envpol.2010.10.016, lire en ligne, consulté le ).
  • « Les promesses du biochar, un charbon végétal et vertueux », La Croix,‎ (ISSN 0242-6056, lire en ligne, consulté le )
  • (en) H. H. Janzen, « Beyond carbon sequestration: soil as conduit of solar energy », European Journal of Soil Science, vol. 66, no 1,‎ , p. 19–32 (ISSN 1365-2389, DOI 10.1111/ejss.12194, lire en ligne, consulté le )
  • Yosuke Yanai, Koki Toyota et Masanori Okazaki, « Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments », Soil Science and Plant Nutrition, vol. 53, no 2,‎ , p. 181–188 (ISSN 0038-0768, DOI 10.1111/j.1747-0765.2007.00123.x, lire en ligne, consulté le )
  • (en) T. G. Ambaye, M. Vaccari, E. D. van Hullebusch et A. Amrane, « Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater », International Journal of Environmental Science and Technology, vol. 18, no 10,‎ , p. 3273–3294 (ISSN 1735-1472 et 1735-2630, DOI 10.1007/s13762-020-03060-w, lire en ligne, consulté le )
  • (en) B. Schatowitz, G. Brandt, F. Gafner et E. Schlumpf, « Dioxin emissions from wood combustion », Chemosphere, vol. 29, no 9,‎ , p. 2005–2013 (ISSN 0045-6535, DOI 10.1016/0045-6535(94)90367-0, lire en ligne, consulté le )

jmu.edu

commons.lib.jmu.edu

la-croix.com

  • « Les promesses du biochar, un charbon végétal et vertueux », La Croix,‎ (ISSN 0242-6056, lire en ligne, consulté le )

lesechos.fr

nature.com

  • (en) Johannes Lehmann, « A handful of carbon », Nature, vol. 447, no 7141,‎ , p. 143–144 (ISSN 1476-4687, DOI 10.1038/447143a, lire en ligne, consulté le )
  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785.[6]

nih.gov

ncbi.nlm.nih.gov

  • Ma JW, Wang FY, Huang ZH, Wang H (2010) Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. Journal of Hazardous Materials 176:715-720.[11]

nt.gov.au

dcm.nt.gov.au

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biology and Fertility of Soils 35:219–230.[2]

researchgate.net

sciencedirect.com

  • Lima HN, Schaefer CER, Mello JWV, Gilkes RJ, Ker JC (2002) Pedogenesis and pre-Colombian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma 110:1–17 [1]
  • Bengtsson G, Bengtson P, Månsson KF (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biology and Biochemistry 35:143–154.[9]
  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry 35:29–36.[10]
  • Brodowski S, Amelung W, Haumaier L, Zech W (2007) Black carbon contribution to stable humus in German arable soils. Geoderma 139:220-228.[16]
  • Adam JC (2009) Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (Eco-charcoal). Renewable Energy 8:1923-1925.[18]
  • Al-Kassir A, Ganan-Gomez J, Mohamad AA, Cuerda-Correa EM (2010) A study of energy production from cork residues: sawdust, sandpaper dust and triturated wood. Energy 1:382-386.[19]
  • Christensen M, Rayamajhi S, Meilby H (2009) Balancing fuelwood and biodiversity concerns in rural Nepal. Ecological Modelling 4:522-532.[20]
  • (en) B. Schatowitz, G. Brandt, F. Gafner et E. Schlumpf, « Dioxin emissions from wood combustion », Chemosphere, vol. 29, no 9,‎ , p. 2005–2013 (ISSN 0045-6535, DOI 10.1016/0045-6535(94)90367-0, lire en ligne, consulté le )

sciencemag.org

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623-1627.[23]

scijournals.org

agron.scijournals.org

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal 100: 178-181.[5]

springer.com

link.springer.com

  • (en) T. G. Ambaye, M. Vaccari, E. D. van Hullebusch et A. Amrane, « Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater », International Journal of Environmental Science and Technology, vol. 18, no 10,‎ , p. 3273–3294 (ISSN 1735-1472 et 1735-2630, DOI 10.1007/s13762-020-03060-w, lire en ligne, consulté le )

springerlink.com

  • Sierra J, Noël C, Dufour L, Ozier-Lafontaine H, Welcker C, Desfontaines L (2003) Mineral nutrition and growth of tropical maize as affected by soil acidity. Plant and Soil 252:215–226 [12]
  • Topoliantz S, Ponge JF, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils 41:15–21 [14]
  • Kreutzer K (2003) Effects of forest liming on soil processes. Plant and Soil 168:447-470 [15]

transition-energie.com

uam.es

ufl.edu

users.clas.ufl.edu

usda.gov

ars.usda.gov

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Advances in Agronomy 99:345–399 [13]

wikipedia.org

en.wikipedia.org

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, Vasconcelos de Macêdo JL, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil (en) 291: 275-290.[4]

wiley.com

onlinelibrary.wiley.com

  • (en) H. H. Janzen, « Beyond carbon sequestration: soil as conduit of solar energy », European Journal of Soil Science, vol. 66, no 1,‎ , p. 19–32 (ISSN 1365-2389, DOI 10.1111/ejss.12194, lire en ligne, consulté le )