Coronavirus lié au syndrome respiratoire aigu sévère (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Coronavirus lié au syndrome respiratoire aigu sévère" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
4th place
12th place
5,233rd place
5,695th place
1st place
1st place
18th place
118th place
896th place
1,435th place
195th place
221st place
5,061st place
1,641st place
234th place
147th place
57th place
4th place
low place
low place

biorxiv.org

doi.org

dx.doi.org

  • DOI 10.1186/s44149-021-00005-9
  • « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ , p. 174 (PMID 30791586, PMCID 6409556, DOI 10.3390/v11020174) :

    « Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45]. »

  • « Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor », Nature, vol. 503, no 7477,‎ , p. 535–8 (PMID 24172901, PMCID 5389864, DOI 10.1038/nature12711, Bibcode 2013Natur.503..535G)
  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein. »

  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, « The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 », Nature Microbiology,‎ (PMID 32123347, DOI 10.1038/s41564-020-0695-z)
  • Kohen et Kupferschmidth, « Strategies shift as coronavirus pandemic looms », Science, vol. 367, no 6481,‎ , p. 962–963 (PMID 32108093, DOI 10.1126/science.367.6481.962)
  • « Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events », Journal of Virology, vol. 84, no 6,‎ , p. 2808–19 (PMID 20071579, PMCID 2826035, DOI 10.1128/JVI.02219-09)
  • « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ , p. 174 (PMID 30791586, PMCID 6409556, DOI 10.3390/v11020174) :

    « See Figure 1. »

  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « See Figure 1. »

  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « Furthermore, subsequent phylogenetic analysis using both complete genome sequence and proteomic approaches, it was concluded that SARSr-CoV is probably an early split-off from the Betacoronavirus lineage [1]; See Figure 2. »

  • « SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory », Infection, Genetics and Evolution, vol. 11, no 7,‎ , p. 1690–702 (PMID 21763784, DOI 10.1016/j.meegid.2011.06.021) :

    « Betacoronaviruses-b ancestors, meaning SARSr-CoVs ancestors, could have been historically hosted by the common ancestor of the Rhinolophidae and Hipposideridae and could have later evolved independently in the lineages leading towards Rhinolophidae and Hipposideridae betacoronaviruses. »

  • « Evolutionary relationships between bat coronaviruses and their hosts », Emerging Infectious Diseases, vol. 13, no 10,‎ , p. 1526–32 (PMID 18258002, PMCID 2851503, DOI 10.3201/eid1310.070448)
  • DOI 10.1016/S0140-6736(20)30251-8
  • DOI 10.1128/JVI.00650-10
  • DOI 10.1038/s41598-021-94011-z
  • DOI 10.1038/s41586-020-2012-7
  • Shin Murakami, Tomoya Kitamura, Jin Suzuki, Ryouta Sato, Toshiki Aoi, Marina Fujii, Hiromichi Matsugo, Haruhiko Kamiki, Hiroho Ishida, Akiko Takenaka-Uema, Masayuki Shimojima et Taisuke Horimoto, « Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan », Emerging Infectious Diseases, vol. 26, no 12,‎ , p. 3025–3029 (DOI 10.3201/eid2612.203386)
  • Hong Zhou, Xing Chen, Tao Hu, Juan Li, Hao Song, Yanran Liu, Peihan Wang, Di Liu, Jing Yang, Edward C. Holmes, Alice C. Hughes, Yuhai Bi et Weifeng Shi, « A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein », Current Biology, vol. 30, no 11,‎ , p. 2196–2203.e3 (DOI 10.1016/j.cub.2020.05.023)
  • Tommy Tsan-Yuk Lam, Na Jia, Ya-Wei Zhang, Marcus Ho-Hin Shum, Jia-Fu Jiang, Hua-Chen Zhu, Yi-Gang Tong, Yong-Xia Shi, Xue-Bing Ni, Yun-Shi Liao, Wen-Juan Li, Bao-Gui Jiang, Wei Wei, Ting-Ting Yuan, Kui Zheng, Xiao-Ming Cui, Jie Li, Guang-Qian Pei, Xin Qiang, William Yiu-Man Cheung, Lian-Feng Li, Fang-Fang Sun, Si Qin, Ji-Cheng Huang, Gabriel M. Leung, Edward C. Holmes, Yan-Ling Hu, Yi Guan et Wu-Chun Cao, « Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins », Nature, vol. 583, no 7815,‎ , p. 282–285 (DOI 10.1038/s41586-020-2169-0)
  • Ping Liu, Jing-Zhe Jiang, Xiu-Feng Wan, Yan Hua, Linmiao Li, Jiabin Zhou, Xiaohu Wang, Fanghui Hou, Jing Chen, Jiejian Zou et Jinping Chen, « Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? », PLOS Pathogens, vol. 16, no 5,‎ , e1008421 (DOI 10.1371/journal.ppat.1008421)
  • (en) Vibol Hul, Deborah Delaune, Erik A. Karlsson, Alexandre Hassanin, Putita Ou Tey, Artem Baidaliuk, Fabiana Gámbaro, Vuong Tan Tu, Lucy Keatts, Jonna Mazet, Christine Johnson, Philippe Buchy, Philippe Dussart, Tracey Goldstein, Etienne Simon-Lorière et Veasna Duong, « A novel SARS-CoV-2 related coronavirus in bats from Cambodia », sur bioRxiv, (DOI 10.1101/2021.01.26.428212), p. 2021.01.26.428212
  • S Wacharapluesadee, CW Tan, P Maneeorn, P Duengkae, F Zhu, Y Joyjinda, T Kaewpom, WN Chia, W Ampoot, BL Lim, K Worachotsueptrakun, VC Chen, N Sirichan, C Ruchisrisarod, A Rodpan, K Noradechanon, T Phaichana, N Jantarat, B Thongnumchaima, C Tu, G Crameri, MM Stokes, T Hemachudha et LF Wang, « Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. », Nature Communications, vol. 12, no 1,‎ , p. 972 (PMID 33563978, PMCID 7873279, DOI 10.1038/s41467-021-21240-1)
  • H Zhou, X Chen, T Hu, J Li, H Song, Y Liu, P Wang, D Liu, J Yang, EC Holmes, AC Hughes, Y Bi et W Shi, « A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. », Current biology : CB, vol. 30, no 11,‎ , p. 2196-2203.e3 (PMID 32416074, DOI 10.1016/j.cub.2020.05.023)
  • « Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin », Nature, vol. 588, no 7836,‎ , E6 (PMID 33199918, DOI 10.1038/s41586-020-2951-z, lire en ligne)
  • « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ , p. 991–1004 (PMID 12927536, DOI 10.1016/S0022-2836(03)00865-9) :

    « The SARS-CoV genome is ∼29.7 kb long and contains 14 open reading frames (ORFs) flanked by 5′ and 3′-untranslated regions of 265 and 342 nucleotides, respectively (Figure 1). »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis »
  • « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ , p. 1–23 (ISBN 978-1-4939-2438-7, PMID 25720466, PMCID 4369385, DOI 10.1007/978-1-4939-2438-7_1)
  • « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ , p. 2902–23 (PMID 23202509, PMCID 3509677, DOI 10.3390/v4112902) :

    « See Table 1. »

  • « Differential stepwise evolution of SARS coronavirus functional proteins in different host species », BMC Evolutionary Biology, vol. 9,‎ , p. 52 (PMID 19261195, PMCID 2676248, DOI 10.1186/1471-2148-9-52)
  • Narayanan, Huang et Makino, « SARS coronavirus Accessory Proteins », Virus Research, vol. 133, no 1,‎ , p. 113–121 (ISSN 0168-1702, PMID 18045721, PMCID 2720074, DOI 10.1016/j.virusres.2007.10.009) :

    « See Table 1. »

  • « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ , p. 2902–23 (PMID 23202509, PMCID 3509677, DOI 10.3390/v4112902)
  • « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ , p. 991–1004 (PMID 12927536, DOI 10.1016/S0022-2836(03)00865-9) :

    « See Figure 1. »

  • « Ultrastructural characterization of SARS coronavirus », Emerging Infectious Diseases, vol. 10, no 2,‎ , p. 320–6 (PMID 15030705, PMCID 3322934, DOI 10.3201/eid1002.030913) :

    « Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A) »

  • « The molecular biology of coronaviruses », Advances in Virus Research, vol. 48,‎ , p. 1–100 (ISBN 9780120398485, PMID 9233431, DOI 10.1016/S0065-3527(08)60286-9)
  • The molecular biology of coronaviruses, vol. 66, Academic Press, coll. « Advances in Virus Research », , 193–292 p. (ISBN 9780120398690, PMID 16877062, DOI 10.1016/S0065-3527(06)66005-3) :

    « Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism. »

  • « Origin and evolution of pathogenic coronaviruses », Nature Reviews. Microbiology, vol. 17, no 3,‎ , p. 181–192 (PMID 30531947, DOI 10.1038/s41579-018-0118-9) :

    « Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells76,78 (Fig. 6b) »

  • « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ , p. 1–23 (ISBN 978-1-4939-2438-7, PMID 25720466, PMCID 4369385, DOI 10.1007/978-1-4939-2438-7_1) :

    « See section: Virion Structure. »

  • « The SARS coronavirus nucleocapsid protein--forms and functions », Antiviral Research, vol. 103,‎ , p. 39–50 (PMID 24418573, DOI 10.1016/j.antiviral.2013.12.009) :

    « See Figure 4c. »

  • « A structural analysis of M protein in coronavirus assembly and morphology », Journal of Structural Biology, vol. 174, no 1,‎ , p. 11–22 (PMID 21130884, PMCID 4486061, DOI 10.1016/j.jsb.2010.11.021) :

    « See Figure 10. »

  • Molecular Biology of the SARS-Coronavirus, (ISBN 978-3-642-03682-8, DOI 10.1007/978-3-642-03683-5)
  • « Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins. », bioRxiv,‎ (DOI 10.1101/2020.02.10.942136)
  • « Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. », bioRxiv,‎ (DOI 10.1101/2020.01.24.919183)
  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Attachment and Entry »

  • « Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research », Antiviral Research, vol. 100, no 3,‎ , p. 605–14 (PMID 24121034, PMCID 3889862, DOI 10.1016/j.antiviral.2013.09.028) :

    « See Figure 2 »

  • « TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein », Journal of Virology, vol. 88, no 2,‎ , p. 1293–307 (PMID 24227843, PMCID 3911672, DOI 10.1128/JVI.02202-13) :

    « The SARS-CoV can hijack two cellular proteolytic systems to ensure the adequate processing of its S protein. Cleavage of SARS-S can be facilitated by cathepsin L, a pH-dependent endo-/lysosomal host cell protease, upon uptake of virions into target cell endosomes (25). Alternatively, the type II transmembrane serine proteases (TTSPs) TMPRSS2 and HAT can activate SARS-S, presumably by cleavage of SARS-S at or close to the cell surface, and activation of SARS-S by TMPRSS2 allows for cathepsin L-independent cellular entry (26,–28). »

  • « Coronaviruses - drug discovery and therapeutic options », Nature Reviews. Drug Discovery, vol. 15, no 5,‎ , p. 327–47 (PMID 26868298, DOI 10.1038/nrd.2015.37) :

    « S is activated and cleaved into the S1 and S2 subunits by other host proteases, such as transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, which enables cell surface non-endosomal virus entry at the plasma membrane. »

  • « The molecular biology of coronaviruses », Advances in Virus Research, Academic Press, vol. 66,‎ , p. 193–292 (ISBN 9780120398690, PMID 16877062, DOI 10.1016/S0065-3527(06)66005-3) :

    « See Figure 8. »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Replicase Protein Expression »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Table 2. »

  • « Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens », Journal of Virology, vol. 90, no 16,‎ , p. 7415–28 (PMID 27279608, PMCID 4984655, DOI 10.1128/JVI.00080-16) :

    « Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38) »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Corona Life Cycle – Replication and Transcription »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Figure 1. »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Assembly and Release »

harvard.edu

ui.adsabs.harvard.edu

ictvonline.org

talk.ictvonline.org

issn.org

portal.issn.org

nature.com

nih.gov

ncbi.nlm.nih.gov

  • « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ , p. 174 (PMID 30791586, PMCID 6409556, DOI 10.3390/v11020174) :

    « Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45]. »

  • « Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor », Nature, vol. 503, no 7477,‎ , p. 535–8 (PMID 24172901, PMCID 5389864, DOI 10.1038/nature12711, Bibcode 2013Natur.503..535G)
  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein. »

  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, « The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 », Nature Microbiology,‎ (PMID 32123347, DOI 10.1038/s41564-020-0695-z)
  • Kohen et Kupferschmidth, « Strategies shift as coronavirus pandemic looms », Science, vol. 367, no 6481,‎ , p. 962–963 (PMID 32108093, DOI 10.1126/science.367.6481.962)
  • « Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events », Journal of Virology, vol. 84, no 6,‎ , p. 2808–19 (PMID 20071579, PMCID 2826035, DOI 10.1128/JVI.02219-09)
  • « Global Epidemiology of Bat Coronaviruses », Viruses, vol. 11, no 2,‎ , p. 174 (PMID 30791586, PMCID 6409556, DOI 10.3390/v11020174) :

    « See Figure 1. »

  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « See Figure 1. »

  • « Coronavirus genomics and bioinformatics analysis », Viruses, vol. 2, no 8,‎ , p. 1804–20 (PMID 21994708, PMCID 3185738, DOI 10.3390/v2081803) :

    « Furthermore, subsequent phylogenetic analysis using both complete genome sequence and proteomic approaches, it was concluded that SARSr-CoV is probably an early split-off from the Betacoronavirus lineage [1]; See Figure 2. »

  • « SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory », Infection, Genetics and Evolution, vol. 11, no 7,‎ , p. 1690–702 (PMID 21763784, DOI 10.1016/j.meegid.2011.06.021) :

    « Betacoronaviruses-b ancestors, meaning SARSr-CoVs ancestors, could have been historically hosted by the common ancestor of the Rhinolophidae and Hipposideridae and could have later evolved independently in the lineages leading towards Rhinolophidae and Hipposideridae betacoronaviruses. »

  • « Evolutionary relationships between bat coronaviruses and their hosts », Emerging Infectious Diseases, vol. 13, no 10,‎ , p. 1526–32 (PMID 18258002, PMCID 2851503, DOI 10.3201/eid1310.070448)
  • S Wacharapluesadee, CW Tan, P Maneeorn, P Duengkae, F Zhu, Y Joyjinda, T Kaewpom, WN Chia, W Ampoot, BL Lim, K Worachotsueptrakun, VC Chen, N Sirichan, C Ruchisrisarod, A Rodpan, K Noradechanon, T Phaichana, N Jantarat, B Thongnumchaima, C Tu, G Crameri, MM Stokes, T Hemachudha et LF Wang, « Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. », Nature Communications, vol. 12, no 1,‎ , p. 972 (PMID 33563978, PMCID 7873279, DOI 10.1038/s41467-021-21240-1)
  • H Zhou, X Chen, T Hu, J Li, H Song, Y Liu, P Wang, D Liu, J Yang, EC Holmes, AC Hughes, Y Bi et W Shi, « A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. », Current biology : CB, vol. 30, no 11,‎ , p. 2196-2203.e3 (PMID 32416074, DOI 10.1016/j.cub.2020.05.023)
  • « Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin », Nature, vol. 588, no 7836,‎ , E6 (PMID 33199918, DOI 10.1038/s41586-020-2951-z, lire en ligne)
  • « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ , p. 991–1004 (PMID 12927536, DOI 10.1016/S0022-2836(03)00865-9) :

    « The SARS-CoV genome is ∼29.7 kb long and contains 14 open reading frames (ORFs) flanked by 5′ and 3′-untranslated regions of 265 and 342 nucleotides, respectively (Figure 1). »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis »
  • « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ , p. 1–23 (ISBN 978-1-4939-2438-7, PMID 25720466, PMCID 4369385, DOI 10.1007/978-1-4939-2438-7_1)
  • « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ , p. 2902–23 (PMID 23202509, PMCID 3509677, DOI 10.3390/v4112902) :

    « See Table 1. »

  • « Differential stepwise evolution of SARS coronavirus functional proteins in different host species », BMC Evolutionary Biology, vol. 9,‎ , p. 52 (PMID 19261195, PMCID 2676248, DOI 10.1186/1471-2148-9-52)
  • Narayanan, Huang et Makino, « SARS coronavirus Accessory Proteins », Virus Research, vol. 133, no 1,‎ , p. 113–121 (ISSN 0168-1702, PMID 18045721, PMCID 2720074, DOI 10.1016/j.virusres.2007.10.009) :

    « See Table 1. »

  • « The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis », Viruses, vol. 4, no 11,‎ , p. 2902–23 (PMID 23202509, PMCID 3509677, DOI 10.3390/v4112902)
  • « Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage », Journal of Molecular Biology, vol. 331, no 5,‎ , p. 991–1004 (PMID 12927536, DOI 10.1016/S0022-2836(03)00865-9) :

    « See Figure 1. »

  • « Ultrastructural characterization of SARS coronavirus », Emerging Infectious Diseases, vol. 10, no 2,‎ , p. 320–6 (PMID 15030705, PMCID 3322934, DOI 10.3201/eid1002.030913) :

    « Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A) »

  • « The molecular biology of coronaviruses », Advances in Virus Research, vol. 48,‎ , p. 1–100 (ISBN 9780120398485, PMID 9233431, DOI 10.1016/S0065-3527(08)60286-9)
  • The molecular biology of coronaviruses, vol. 66, Academic Press, coll. « Advances in Virus Research », , 193–292 p. (ISBN 9780120398690, PMID 16877062, DOI 10.1016/S0065-3527(06)66005-3) :

    « Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism. »

  • « Origin and evolution of pathogenic coronaviruses », Nature Reviews. Microbiology, vol. 17, no 3,‎ , p. 181–192 (PMID 30531947, DOI 10.1038/s41579-018-0118-9) :

    « Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells76,78 (Fig. 6b) »

  • « An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization », Methods in Molecular Biology, Springer, vol. 1282,‎ , p. 1–23 (ISBN 978-1-4939-2438-7, PMID 25720466, PMCID 4369385, DOI 10.1007/978-1-4939-2438-7_1) :

    « See section: Virion Structure. »

  • « The SARS coronavirus nucleocapsid protein--forms and functions », Antiviral Research, vol. 103,‎ , p. 39–50 (PMID 24418573, DOI 10.1016/j.antiviral.2013.12.009) :

    « See Figure 4c. »

  • « A structural analysis of M protein in coronavirus assembly and morphology », Journal of Structural Biology, vol. 174, no 1,‎ , p. 11–22 (PMID 21130884, PMCID 4486061, DOI 10.1016/j.jsb.2010.11.021) :

    « See Figure 10. »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Attachment and Entry »

  • « Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research », Antiviral Research, vol. 100, no 3,‎ , p. 605–14 (PMID 24121034, PMCID 3889862, DOI 10.1016/j.antiviral.2013.09.028) :

    « See Figure 2 »

  • « TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein », Journal of Virology, vol. 88, no 2,‎ , p. 1293–307 (PMID 24227843, PMCID 3911672, DOI 10.1128/JVI.02202-13) :

    « The SARS-CoV can hijack two cellular proteolytic systems to ensure the adequate processing of its S protein. Cleavage of SARS-S can be facilitated by cathepsin L, a pH-dependent endo-/lysosomal host cell protease, upon uptake of virions into target cell endosomes (25). Alternatively, the type II transmembrane serine proteases (TTSPs) TMPRSS2 and HAT can activate SARS-S, presumably by cleavage of SARS-S at or close to the cell surface, and activation of SARS-S by TMPRSS2 allows for cathepsin L-independent cellular entry (26,–28). »

  • « Coronaviruses - drug discovery and therapeutic options », Nature Reviews. Drug Discovery, vol. 15, no 5,‎ , p. 327–47 (PMID 26868298, DOI 10.1038/nrd.2015.37) :

    « S is activated and cleaved into the S1 and S2 subunits by other host proteases, such as transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, which enables cell surface non-endosomal virus entry at the plasma membrane. »

  • « The molecular biology of coronaviruses », Advances in Virus Research, Academic Press, vol. 66,‎ , p. 193–292 (ISBN 9780120398690, PMID 16877062, DOI 10.1016/S0065-3527(06)66005-3) :

    « See Figure 8. »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Replicase Protein Expression »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Table 2. »

  • « Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens », Journal of Virology, vol. 90, no 16,‎ , p. 7415–28 (PMID 27279608, PMCID 4984655, DOI 10.1128/JVI.00080-16) :

    « Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38) »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Corona Life Cycle – Replication and Transcription »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See Figure 1. »

  • Coronaviruses, vol. 1282, Springer, coll. « Methods in Molecular Biology », , 1–23 p. (ISBN 978-1-4939-2438-7, PMID 25720466, DOI 10.1007/978-1-4939-2438-7_1), « Coronaviruses: an overview of their replication and pathogenesis » :

    « See section: Coronavirus Life Cycle – Assembly and Release »

scientificamerican.com

blogs.scientificamerican.com

scireslit.com

web.archive.org

who.int