Matheus Bernardini et Fernando Torres, « Counting numerical semigroups by genus and even gaps », Discrete Mathematics, vol. 340, no 12, , p. 2853-2863 (arXiv1612.01212).
Jean Fromentin et Florent Hivert, « Exploring the tree of numerical semigroups », Mathematics of Computation, vol. 85, no 301, , p. 2553–2568 (DOI10.1090/mcom/3075, arXiv1305.3831).
Alex Zhai, « Fibonacci-like growth of numerical semigroups of a given genus », Semigroup Forum, vol. 86, no 3, , p. 634-662 (DOI10.1007/s00233-012-9456-5, arXiv1111.3142).
Jean Fromentin et Florent Hivert, « Exploring the tree of numerical semigroups », Mathematics of Computation, vol. 85, no 301, , p. 2553–2568 (DOI10.1090/mcom/3075, arXiv1305.3831).
Alex Zhai, « Fibonacci-like growth of numerical semigroups of a given genus », Semigroup Forum, vol. 86, no 3, , p. 634-662 (DOI10.1007/s00233-012-9456-5, arXiv1111.3142).
Frank Curtis, « On formulas for the Frobenius number of a numerical semigroup. », Mathematica Scandinavica, vol. 67, , p. 190-192 (ISSN1903-1807, DOI10.7146/math.scand.a-12330).
J. C. Rosales, P. A. García-Sánchez et J. I. García-García, « Every positive integer is the Frobenius number of a numerical semigroup with three generators », Mathematica Scandinavica, vol. 94, no 1, , p. 5-12 (ISSN1903-1807, DOI10.7146/math.scand.a-14427).
Harold Greenberg, « Solution to a linear Diophantine equation for non-negative integers », Journal of Algorithms, vol. 9, no 3, , p. 343–353 (DOI10.1016/0196-6774(88)90025-9).
issn.org
portal.issn.org
Frank Curtis, « On formulas for the Frobenius number of a numerical semigroup. », Mathematica Scandinavica, vol. 67, , p. 190-192 (ISSN1903-1807, DOI10.7146/math.scand.a-12330).
J. C. Rosales, P. A. García-Sánchez et J. I. García-García, « Every positive integer is the Frobenius number of a numerical semigroup with three generators », Mathematica Scandinavica, vol. 94, no 1, , p. 5-12 (ISSN1903-1807, DOI10.7146/math.scand.a-14427).