Dimension fractale (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dimension fractale" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
513th place
972nd place
70th place
196th place
741st place
1,215th place
low place
low place
68th place
67th place
4th place
12th place

doi.org

dx.doi.org

  • (en) B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, « Evaluating the fractal dimension of profiles », Phys. Rev. A, vol. 39,‎ , p. 1500–12 (DOI 10.1103/PhysRevA.39.1500)
  • (en) P. Soille and J.-F. Rivest, « On the validity of fractal dimension measurements in image analysis », Journal of Visual Communication and Image Representation, vol. 7,‎ , p. 217–229 (DOI 10.1006/jvci.1996.0020, lire en ligne)
  • (en) Tolle, C. R., McJunkin, T. R., and Gorisch, D. J., « Suboptimal Minimum Cluster Volume Cover-Based Method for Measuring Fractal Dimension », IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no 1,‎ , p. 32–41 (DOI 10.1109/TPAMI.2003.1159944)
  • (en) P. Maragos and A. Potamianos, « Fractal dimensions of speech sounds: Computation and application to automatic speech recognition », Journal of the Acoustical Society of America, vol. 105, no 3,‎ , p. 1925 (PMID 10089613, DOI 10.1121/1.426738)
  • (en) O. Shanker, « Random matrices, generalized zeta functions and self-similarity of zero distributions », J. Phys. A: Math. Gen., vol. 39,‎ , p. 13983–97 (DOI 10.1088/0305-4470/39/45/008)
  • (en) Ali Eftekhari, « Fractal Dimension of Electrochemical Reactions », Journal of the Electrochemical Society, vol. 151, no 9,‎ , E291–6 (DOI 10.1149/1.1773583)

europa.eu

mdigest.jrc.ec.europa.eu

  • (en) P. Soille and J.-F. Rivest, « On the validity of fractal dimension measurements in image analysis », Journal of Visual Communication and Image Representation, vol. 7,‎ , p. 217–229 (DOI 10.1006/jvci.1996.0020, lire en ligne)

loc.gov

lccn.loc.gov

  • (en) Manferd Robert Schroeder, Fractals, Chaos, Power Laws : Minutes from an Infinite Paradise, New York, W H Freeman & Co (Sd), , 6e éd., 429 p. (ISBN 978-0-7167-2136-9, LCCN 90036763)
  • (en) Kenneth Falconer, Fractal Geometry : Mathematical Foundations and Applications, Chichester, John Wiley & Sons, Ltd., 1990 & 2003, 2e éd., poche (ISBN 978-0-470-84862-3, LCCN 2004271361)

nih.gov

ncbi.nlm.nih.gov

  • (en) P. Maragos and A. Potamianos, « Fractal dimensions of speech sounds: Computation and application to automatic speech recognition », Journal of the Acoustical Society of America, vol. 105, no 3,‎ , p. 1925 (PMID 10089613, DOI 10.1121/1.426738)

princeton.edu

scholarpedia.org

wolfram.com

mathworld.wolfram.com