Simon Hawkins, Hongxing He, Graham Williams et Rohan Baxter, Data Warehousing and Knowledge Discovery, vol. 2454, coll. « Lecture Notes in Computer Science », , 337 p. (ISBN978-3-540-44123-6, DOI10.1007/3-540-46145-0_17, lire en ligne), « Outlier Detection Using Replicator Neural Networks »
byu.edu
axon.cs.byu.edu
M. R. Smith et T. Martinez, The 2011 International Joint Conference on Neural Networks, , 2690 p. (ISBN978-1-4244-9635-8, DOI10.1109/IJCNN.2011.6033571, lire en ligne), « Improving classification accuracy by identifying and removing instances that should be misclassified »
M. R. Smith et T. Martinez, The 2011 International Joint Conference on Neural Networks, , 2690 p. (ISBN978-1-4244-9635-8, DOI10.1109/IJCNN.2011.6033571, lire en ligne), « Improving classification accuracy by identifying and removing instances that should be misclassified »
Arthur Zimek et Peter Filzmoser, « There and back again: Outlier detection between statistical reasoning and data mining algorithms », Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no 6, , e1280 (ISSN1942-4787, DOI10.1002/widm.1280)
E. M. Knorr, R. T. Ng et V. Tucakov, « Distance-based outliers: Algorithms and applications », The VLDB Journal the International Journal on Very Large Data Bases, vol. 8, nos 3–4, , p. 237–253 (DOI10.1007/s007780050006, CiteSeerx10.1.1.43.1842)
S. Ramaswamy, R. Rastogi et K. Shim « Efficient algorithms for mining outliers from large data sets » () (DOI10.1145/342009.335437) —Proceedings of the 2000 ACM SIGMOD international conference on Management of data – SIGMOD '00
F. Angiulli et C. Pizzuti « Fast Outlier Detection in High Dimensional Spaces » () (DOI10.1007/3-540-45681-3_2) —Principles of Data Mining and Knowledge Discovery
M. M. Breunig, H.-P. Kriegel, R. T. Ng et J. Sander « LOF: Identifying Density-based Local Outliers » () (DOI10.1145/335191.335388, lire en ligne) — « (ibid.) », Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, , p. 93–104
E. Schubert, A. Zimek et H. -P. Kriegel, « Local outlier detection reconsidered: A generalized view on locality with applications to spatial, video, and network outlier detection », Data Mining and Knowledge Discovery, vol. 28, , p. 190–237 (DOI10.1007/s10618-012-0300-z)
H. P. Kriegel, P. Kröger, E. Schubert et A. Zimek« Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data » () (DOI10.1007/978-3-642-01307-2_86) —Advances in Knowledge Discovery and Data Mining
H. P. Kriegel, P. Kroger, E. Schubert et A. Zimek« Outlier Detection in Arbitrarily Oriented Subspaces » () (DOI10.1109/ICDM.2012.21) —2012 IEEE 12th International Conference on Data Mining
H. Fanaee-T et J. Gama, « Tensor-based anomaly detection: An interdisciplinary survey », Knowledge-Based Systems, vol. 98, , p. 130–147 (DOI10.1016/j.knosys.2016.01.027)
A. Zimek, E. Schubert et H.-P. Kriegel, « A survey on unsupervised outlier detection in high-dimensional numerical data », Statistical Analysis and Data Mining, vol. 5, no 5, , p. 363–387 (DOI10.1002/sam.11161)
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola et R. C. Williamson, « Estimating the Support of a High-Dimensional Distribution », Neural Computation, vol. 13, no 7, , p. 1443–71 (PMID11440593, DOI10.1162/089976601750264965, CiteSeerx10.1.1.4.4106)
Simon Hawkins, Hongxing He, Graham Williams et Rohan Baxter, Data Warehousing and Knowledge Discovery, vol. 2454, coll. « Lecture Notes in Computer Science », , 337 p. (ISBN978-3-540-44123-6, DOI10.1007/3-540-46145-0_17, lire en ligne), « Outlier Detection Using Replicator Neural Networks »
R. J. G. B. Campello, D. Moulavi, A. Zimek et J. Sander, « Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection », ACM Transactions on Knowledge Discovery from Data, vol. 10, no 1, , p. 5:1–51 (DOI10.1145/2733381)
A. Lazarevic et V. Kumar, Feature bagging for outlier detection (Proc. 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining), , 157–166 p. (ISBN978-1-59593-135-1, DOI10.1145/1081870.1081891)
H. V. Nguyen, H. H. Ang et V. Gopalkrishnan « Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces » () (DOI10.1007/978-3-642-12026-8_29) —Database Systems for Advanced Applications
E. Schubert, R. Wojdanowski, A. Zimek et H. P. Kriegel« On Evaluation of Outlier Rankings and Outlier Scores » () (DOI10.1137/1.9781611972825.90) —Proceedings of the 2012 SIAM International Conference on Data Mining
A. Zimek, R. J. G. B. Campello et J. R. Sander, « Ensembles for unsupervised outlier detection », ACM SIGKDD Explorations Newsletter, vol. 15, , p. 11–22 (DOI10.1145/2594473.2594476)
A. Zimek, R. J. G. B. Campello et J. R. Sander « Data perturbation for outlier detection ensembles » () (DOI10.1145/2618243.2618257) —Proceedings of the 26th International Conference on Scientific and Statistical Database Management – SSDBM '14
Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. G. B. Campello, Barbora Micenková, Erich Schubert, Ira Assent et Michael E. Houle, « On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study », Data Mining and Knowledge Discovery, vol. 30, no 4, , p. 891 (ISSN1384-5810, DOI10.1007/s10618-015-0444-8)
H. S. Teng, K. Chen et S. C. Lu, Adaptive real-time anomaly detection using inductively generated sequential patterns (Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy), , 401 p. (ISBN978-0-8186-2060-7, DOI10.1109/RISP.1990.63857, lire en ligne)
Arthur Zimek et Peter Filzmoser, « There and back again: Outlier detection between statistical reasoning and data mining algorithms », Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no 6, , e1280 (ISSN1942-4787, DOI10.1002/widm.1280)
Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo J. G. B. Campello, Barbora Micenková, Erich Schubert, Ira Assent et Michael E. Houle, « On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study », Data Mining and Knowledge Discovery, vol. 30, no 4, , p. 891 (ISSN1384-5810, DOI10.1007/s10618-015-0444-8)
lmu.de
dbs.ifi.lmu.de
M. M. Breunig, H.-P. Kriegel, R. T. Ng et J. Sander « LOF: Identifying Density-based Local Outliers » () (DOI10.1145/335191.335388, lire en ligne) — « (ibid.) », Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, , p. 93–104
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola et R. C. Williamson, « Estimating the Support of a High-Dimensional Distribution », Neural Computation, vol. 13, no 7, , p. 1443–71 (PMID11440593, DOI10.1162/089976601750264965, CiteSeerx10.1.1.4.4106)
E. M. Knorr, R. T. Ng et V. Tucakov, « Distance-based outliers: Algorithms and applications », The VLDB Journal the International Journal on Very Large Data Bases, vol. 8, nos 3–4, , p. 237–253 (DOI10.1007/s007780050006, CiteSeerx10.1.1.43.1842)
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola et R. C. Williamson, « Estimating the Support of a High-Dimensional Distribution », Neural Computation, vol. 13, no 7, , p. 1443–71 (PMID11440593, DOI10.1162/089976601750264965, CiteSeerx10.1.1.4.4106)
Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava et Pang-Ning Tan, « Data mining for network intrusion detection », Proceedings NSF Workshop on Next Generation Data Mining, (lire en ligne)
unc.edu
cs.unc.edu
H. S. Teng, K. Chen et S. C. Lu, Adaptive real-time anomaly detection using inductively generated sequential patterns (Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy), , 401 p. (ISBN978-0-8186-2060-7, DOI10.1109/RISP.1990.63857, lire en ligne)