Dans son texte commandé par l’US Navy, Magnus Effect: An Overview of Its Past and Future Practical Applications [3], le groupe Borg/Luther donne comme valeur du coefficient de portance théorique :
…où est le rapport entre la vitesse circonférentielle du rotor et la vitesse de l’écoulement.
Il ajoute :
« Cette valeur théorique du coefficient de portance est beaucoup plus élevée que ce qui a été obtenu par les mesures dans des fluides réels. [...] Tout cela semblerait indiquer que le coefficient de portance théorique est peu utile dans le choix des dimensions des rotors mais les résultats d'une majorité d'expériences tendent à se situer dans une enveloppe comprise entre 50% et 25% du théorique. [...] Les approximations dans la plage de rapport de vitesse de 2 à 5 approcheraient :
pour les cylindres à rapport d'aspect élevé ayant des plaques d'extrémités généreuses,
et être plus proche de :
pour les rotors les plus trapus.
Il ne semble pas y avoir de recette technique pratique pour prédire avec précision la portance par effet Magnus pour des cylindres de proportions non testées (mais cela est également vrai pour les sections de profil aérodynamique conventionnelles). [...] Si le rapport hauteur / diamètre et / ou le diamètre des disques d'extrémités sont plus grands, alors le coefficient de portance le sera aussi et l'inverse sera également vrai. »
bnf.fr
gallica.bnf.fr
Cette partie négative de la courbe de portance n'a pas été vue par certains des premiers chercheurs, mais A. Lafay y avait été confronté très tôt dans son étude de l'effet Magnus sur le cylindre et avait noté que cette inversion de la portance était très sensible à l'état de surface du cylindre et s'annulait avec la rugosité de celui-ci (CONTRIBUTION EXPÉRIMENTALE À L'AÉRODYNAMIQUE DU CYLINDRE ET À L'ÉTUDE DU PHÉNOMÈNE DE MAGNUS, par M. Lafay, professeur à l'École polytechnique, REVUE DE MÉCANIQUE, mai 1912. [4]).
« On the Irregular Flight of a Tennis-Ball », dans Scientific Papers: Volume 1: 1869–1881, vol. 1, Cambridge University Press, coll. « Cambridge Library Collection - Mathematics », (ISBN978-1-108-00542-5, lire en ligne), p. 344–346
docplayer.net
AEROFOIL SECTIONS, Results from wint-tunnel investigations, Theoretical foundations, by Dr Friederich Wilhem Riegels, translated from the German by D. G. Randall, London, Butterworths, 1961 [6]
Benjamins Robins publia en 1742New Principles of Gunnery, ouvrage sur lequel seront basées de nombreuses recherches ultérieures dans ce domaine et où apparaissent les premières mesures de ce que l'on nommera plus tard l'effet Magnus et que pour cette raison certains nomment l'effet Magnus-Robins. Pour toutes ces études Robins est fréquemment surnommé le père de la balistique moderne. L'ouvrage New Principles of Gunnery sera traduit en allemand par un Euler enthousiaste en 1745, ce dernier ne croyant cependant pas à la portance latérale des projectiles rotatifs découverte par Robins, ce qui ôta peut-être à Robins l'antériorité de la découverte de l'effet Robins-Magnus.
hathitrust.org
babel.hathitrust.org
A. Thom et S. R. Sengupta, « Air torque on a cylinder rotating in an air stream », ARC R&M, no 1520, (lire en ligne)
nasa.gov
ntrs.nasa.gov
Pour cette critique de l'ancienne théorie de Kutta-Joukovski, voir le NACA TM 228 [1]
Dans sa note technique NACA TN No 228 [2] consacrée au navire Buckau utilisant l'effet Magnus, F. Rizzo écrit :"Le calcul montre que, bien qu'il existe une certaine relation entre les vitesses théoriques et expérimentales [prédites pour le Buckau], celles obtenues d'après les mesures en soufflerie sont sans aucun doute plus proches des vitesses réelles du navire que celles obtenues par l'utilisation de la force propulsive théorique [trouvée par la théorie de Kutta-Joukowski]."
Autrement dit : la théorie montre bien la tendance, mais les valeurs de force qu'elle prône sont irréalistes.
Plus loin, Rizzo approfondit : « La principale difficulté rencontrée dans la théorie de Kutta-Joukowski, comme l'ont souligné d'éminentes autorités, réside dans la détermination de la circulation réelle et de sa distribution autour du corps ; dans le cas d'un cylindre en rotation, la circulation est en effet supposée être inversement proportionnelle à la distance r du centre et non altérée par la viscosité, le glissement ou de tels éléments nuisibles. Au contraire dans la théorie des ailes préconisée par l'école de Göttingen [(théorie qui donne de bons résultats)], la circulation autour des ailes est en fait déterminée à partir de l'état constaté de l'écoulement lui-même. »
(en) Jakob Ackeret, « Recent experiments at the Gottingen Aerodynamic Institute » [« Traduit en anglais dans le Technical Memorendum NACA TM No 323 »], Zeitschrift fur Flugtechnik und Motorluftschiffahrt, , p. 44-52 (lire en ligne [PDF])
NACA TM No 367, Application of the Magnus effect to the wind propulsion of ships, L. Prandtl [7]
(en) Albert Betz, « The "Magnus Effect", the Principle of Flettner Rotor », Zeitschrift des Vereins deutscher Ingenieure, traduit dans le NACA REPORT no 310, (lire en ligne [PDF])
(en) Ludwig Prandtl, « Application of the "Magnus effect" to the wind propulsion of ships : Traduit en anglais dans le Technical Memorendum NACA TM No 367 » [« Magnuseffekt und Windkraftschiff »], Die Naturwissenschaft, , p. 93-108 (lire en ligne [PDF])
A letter of Mr. Isaac Newton, of the University of Cambridge, containing his new theory about light and color, Philosophical Transactions of the Royal Society 6 (1671), 3075–3087 [5]