(en) Khalid O. Alfarouk, Abdel Khalig Muddathir et Mohammed E. A. Shayoub, « Tumor Acidity as Evolutionary Spite », Cancers, vol. 3, no 1, , p. 408–414 (DOI10.3390/cancers3010408, lire en ligne, consulté le )
(en) Robert A. Gatenby et Robert J. Gillies, « Why do cancers have high aerobic glycolysis? », Nature Reviews Cancer, vol. 4, no 11, , p. 891–899 (ISSN1474-175X, DOI10.1038/nrc1478, lire en ligne, consulté le )
(en) Richard D. Unwin, Rachel A. Craven, Patricia Harnden et Sarah Hanrahan, « Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect », PROTEOMICS, vol. 3, no 8, , p. 1620–1632 (ISSN1615-9861, DOI10.1002/pmic.200300464, lire en ligne, consulté le )
Hajnalka Harami-Papp, Lőrinc S. Pongor, Gyöngyi Munkácsy et Gergő Horváth, « TP53 mutation hits energy metabolism and increases glycolysis in breast cancer », Oncotarget, vol. 7, no 41, , p. 67183–67195 (ISSN1949-2553, DOI10.18632/oncotarget.11594, lire en ligne, consulté le )
(en) Heather R. Christofk, Matthew G. Vander Heiden, Marian H. Harris et Arvind Ramanathan, « The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth », Nature, vol. 452, no 7184, , p. 230–233 (ISSN0028-0836, DOI10.1038/nature06734, lire en ligne, consulté le )
(en) Peter L. Pedersen, « Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen », Journal of Bioenergetics and Biomembranes, vol. 39, no 3, , p. 211 (ISSN0145-479X et 1573-6881, DOI10.1007/s10863-007-9094-x, lire en ligne, consulté le )
(en) H. Pelicano, D. S. Martin, R.-H. Xu et P. Huang, « Glycolysis inhibition for anticancer treatment », Oncogene, vol. 25, no 34, , p. 4633–4646 (ISSN0950-9232, DOI10.1038/sj.onc.1209597, lire en ligne, consulté le )
Saroj P. Mathupala, Chaim B. Colen, Prahlad Parajuli et Andrew E. Sloan, « Lactate and malignant tumors: A therapeutic target at the end stage of glycolysis », Journal of Bioenergetics and Biomembranes, vol. 39, no 1, , p. 73–77 (ISSN0145-479X, PMID17354062, PMCIDPMC3385854, DOI10.1007/s10863-006-9062-x, lire en ligne, consulté le )
Sébastien Bonnet, Stephen L. Archer, Joan Allalunis-Turner et Alois Haromy, « A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth », Cancer Cell, vol. 11, no 1, , p. 37–51 (DOI10.1016/j.ccr.2006.10.020, lire en ligne, consulté le )
Minjong Lee et Jung-Hwan Yoon, « Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication », World Journal of Biological Chemistry, vol. 6, no 3, , p. 148–161 (ISSN1949-8454, PMID26322173, PMCIDPMC4549759, DOI10.4331/wjbc.v6.i3.148, lire en ligne, consulté le )
Stephanos Pavlides, Diana Whitaker-Menezes, Remedios Castello-Cros et Neal Flomenberg, « The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma », Cell Cycle, vol. 8, no 23, , p. 3984–4001 (ISSN1538-4101, PMID19923890, DOI10.4161/cc.8.23.10238, lire en ligne, consulté le )
(en) Khalid O. Alfarouk, Mohammed E. A. Shayoub, Abdel Khalig Muddathir et Gamal O. Elhassan, « Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity) », Cancers, vol. 3, no 3, , p. 3002–3017 (DOI10.3390/cancers3033002, lire en ligne, consulté le )
Carlos Bas-Orth, Yan-Wei Tan, David Lau et Hilmar Bading, « Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect », The Journal of Biological Chemistry, vol. 292, no 13, , p. 5183–5194 (ISSN0021-9258, PMID28196867, PMCIDPMC5392666, DOI10.1074/jbc.M116.761106, lire en ligne, consulté le )
Jordan T. Newington, Tim Rappon, Shawn Albers et Daisy Y. Wong, « Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid β and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production », The Journal of Biological Chemistry, vol. 287, no 44, , p. 37245–37258 (ISSN0021-9258, PMID22948140, PMCIDPMC3481323, DOI10.1074/jbc.M112.366195, lire en ligne, consulté le )
Hajnalka Harami-Papp, Lőrinc S. Pongor, Gyöngyi Munkácsy et Gergő Horváth, « TP53 mutation hits energy metabolism and increases glycolysis in breast cancer », Oncotarget, vol. 7, no 41, , p. 67183–67195 (ISSN1949-2553, DOI10.18632/oncotarget.11594, lire en ligne, consulté le )
isijournal.info
(en) Soroush Niknamian, « Nutritional Ketosis Condition and Specific Ketogenic Diet, May Benefit Cancer Patients as an Alternative Treatment by Sudden Change in the Metabolic State of Cancer Cells. », International Science and Investigation journal, vol. 5, no 5, , p. 28–48 (ISSN2251-8576, lire en ligne, consulté le )
Khalid O. Alfarouk, Daniel Verduzco, Cyril Rauch et Abdel Khalig Muddathir, « Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question », Oncoscience, vol. 1, no 12, , p. 777–802 (ISSN2331-4737, PMID25621294, PMCIDPMC4303887, lire en ligne, consulté le )
(en) Robert A. Gatenby et Robert J. Gillies, « Why do cancers have high aerobic glycolysis? », Nature Reviews Cancer, vol. 4, no 11, , p. 891–899 (ISSN1474-175X, DOI10.1038/nrc1478, lire en ligne, consulté le )
(en) Ernesto Bustamante et Peter L. Pedersen, « High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase », Proceedings of the National Academy of Sciences, vol. 74, no 9, , p. 3735–3739 (ISSN0027-8424 et 1091-6490, PMID198801, lire en ligne, consulté le )
(en) Richard D. Unwin, Rachel A. Craven, Patricia Harnden et Sarah Hanrahan, « Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect », PROTEOMICS, vol. 3, no 8, , p. 1620–1632 (ISSN1615-9861, DOI10.1002/pmic.200300464, lire en ligne, consulté le )
Hajnalka Harami-Papp, Lőrinc S. Pongor, Gyöngyi Munkácsy et Gergő Horváth, « TP53 mutation hits energy metabolism and increases glycolysis in breast cancer », Oncotarget, vol. 7, no 41, , p. 67183–67195 (ISSN1949-2553, DOI10.18632/oncotarget.11594, lire en ligne, consulté le )
(en) Heather R. Christofk, Matthew G. Vander Heiden, Marian H. Harris et Arvind Ramanathan, « The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth », Nature, vol. 452, no 7184, , p. 230–233 (ISSN0028-0836, DOI10.1038/nature06734, lire en ligne, consulté le )
(en) Peter L. Pedersen, « Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen », Journal of Bioenergetics and Biomembranes, vol. 39, no 3, , p. 211 (ISSN0145-479X et 1573-6881, DOI10.1007/s10863-007-9094-x, lire en ligne, consulté le )
(en) H. Pelicano, D. S. Martin, R.-H. Xu et P. Huang, « Glycolysis inhibition for anticancer treatment », Oncogene, vol. 25, no 34, , p. 4633–4646 (ISSN0950-9232, DOI10.1038/sj.onc.1209597, lire en ligne, consulté le )
(en) Soroush Niknamian, « Nutritional Ketosis Condition and Specific Ketogenic Diet, May Benefit Cancer Patients as an Alternative Treatment by Sudden Change in the Metabolic State of Cancer Cells. », International Science and Investigation journal, vol. 5, no 5, , p. 28–48 (ISSN2251-8576, lire en ligne, consulté le )
Chaim B Colen, Yimin Shen, Farhad Ghoddoussi et Pingyang Yu, « Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study », Neoplasia (New York, N.Y.), vol. 13, no 7, , p. 620–632 (ISSN1522-8002, PMID21750656, PMCIDPMC3132848, lire en ligne, consulté le )
Saroj P. Mathupala, Chaim B. Colen, Prahlad Parajuli et Andrew E. Sloan, « Lactate and malignant tumors: A therapeutic target at the end stage of glycolysis », Journal of Bioenergetics and Biomembranes, vol. 39, no 1, , p. 73–77 (ISSN0145-479X, PMID17354062, PMCIDPMC3385854, DOI10.1007/s10863-006-9062-x, lire en ligne, consulté le )
Minjong Lee et Jung-Hwan Yoon, « Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication », World Journal of Biological Chemistry, vol. 6, no 3, , p. 148–161 (ISSN1949-8454, PMID26322173, PMCIDPMC4549759, DOI10.4331/wjbc.v6.i3.148, lire en ligne, consulté le )
Stephanos Pavlides, Diana Whitaker-Menezes, Remedios Castello-Cros et Neal Flomenberg, « The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma », Cell Cycle, vol. 8, no 23, , p. 3984–4001 (ISSN1538-4101, PMID19923890, DOI10.4161/cc.8.23.10238, lire en ligne, consulté le )
Carlos Bas-Orth, Yan-Wei Tan, David Lau et Hilmar Bading, « Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect », The Journal of Biological Chemistry, vol. 292, no 13, , p. 5183–5194 (ISSN0021-9258, PMID28196867, PMCIDPMC5392666, DOI10.1074/jbc.M116.761106, lire en ligne, consulté le )
Jordan T. Newington, Tim Rappon, Shawn Albers et Daisy Y. Wong, « Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid β and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production », The Journal of Biological Chemistry, vol. 287, no 44, , p. 37245–37258 (ISSN0021-9258, PMID22948140, PMCIDPMC3481323, DOI10.1074/jbc.M112.366195, lire en ligne, consulté le )
mdpi.com
(en) Khalid O. Alfarouk, Abdel Khalig Muddathir et Mohammed E. A. Shayoub, « Tumor Acidity as Evolutionary Spite », Cancers, vol. 3, no 1, , p. 408–414 (DOI10.3390/cancers3010408, lire en ligne, consulté le )
(en) Khalid O. Alfarouk, Mohammed E. A. Shayoub, Abdel Khalig Muddathir et Gamal O. Elhassan, « Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity) », Cancers, vol. 3, no 3, , p. 3002–3017 (DOI10.3390/cancers3033002, lire en ligne, consulté le )
nature.com
(en) Robert A. Gatenby et Robert J. Gillies, « Why do cancers have high aerobic glycolysis? », Nature Reviews Cancer, vol. 4, no 11, , p. 891–899 (ISSN1474-175X, DOI10.1038/nrc1478, lire en ligne, consulté le )
(en) Heather R. Christofk, Matthew G. Vander Heiden, Marian H. Harris et Arvind Ramanathan, « The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth », Nature, vol. 452, no 7184, , p. 230–233 (ISSN0028-0836, DOI10.1038/nature06734, lire en ligne, consulté le )
(en) H. Pelicano, D. S. Martin, R.-H. Xu et P. Huang, « Glycolysis inhibition for anticancer treatment », Oncogene, vol. 25, no 34, , p. 4633–4646 (ISSN0950-9232, DOI10.1038/sj.onc.1209597, lire en ligne, consulté le )
nih.gov
ncbi.nlm.nih.gov
Khalid O. Alfarouk, Daniel Verduzco, Cyril Rauch et Abdel Khalig Muddathir, « Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question », Oncoscience, vol. 1, no 12, , p. 777–802 (ISSN2331-4737, PMID25621294, PMCIDPMC4303887, lire en ligne, consulté le )
(en) Ernesto Bustamante et Peter L. Pedersen, « High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase », Proceedings of the National Academy of Sciences, vol. 74, no 9, , p. 3735–3739 (ISSN0027-8424 et 1091-6490, PMID198801, lire en ligne, consulté le )
Chaim B Colen, Yimin Shen, Farhad Ghoddoussi et Pingyang Yu, « Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study », Neoplasia (New York, N.Y.), vol. 13, no 7, , p. 620–632 (ISSN1522-8002, PMID21750656, PMCIDPMC3132848, lire en ligne, consulté le )
Saroj P. Mathupala, Chaim B. Colen, Prahlad Parajuli et Andrew E. Sloan, « Lactate and malignant tumors: A therapeutic target at the end stage of glycolysis », Journal of Bioenergetics and Biomembranes, vol. 39, no 1, , p. 73–77 (ISSN0145-479X, PMID17354062, PMCIDPMC3385854, DOI10.1007/s10863-006-9062-x, lire en ligne, consulté le )
Minjong Lee et Jung-Hwan Yoon, « Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication », World Journal of Biological Chemistry, vol. 6, no 3, , p. 148–161 (ISSN1949-8454, PMID26322173, PMCIDPMC4549759, DOI10.4331/wjbc.v6.i3.148, lire en ligne, consulté le )
Stephanos Pavlides, Diana Whitaker-Menezes, Remedios Castello-Cros et Neal Flomenberg, « The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma », Cell Cycle, vol. 8, no 23, , p. 3984–4001 (ISSN1538-4101, PMID19923890, DOI10.4161/cc.8.23.10238, lire en ligne, consulté le )
Carlos Bas-Orth, Yan-Wei Tan, David Lau et Hilmar Bading, « Synaptic Activity Drives a Genomic Program That Promotes a Neuronal Warburg Effect », The Journal of Biological Chemistry, vol. 292, no 13, , p. 5183–5194 (ISSN0021-9258, PMID28196867, PMCIDPMC5392666, DOI10.1074/jbc.M116.761106, lire en ligne, consulté le )
Jordan T. Newington, Tim Rappon, Shawn Albers et Daisy Y. Wong, « Overexpression of Pyruvate Dehydrogenase Kinase 1 and Lactate Dehydrogenase A in Nerve Cells Confers Resistance to Amyloid β and Other Toxins by Decreasing Mitochondrial Respiration and Reactive Oxygen Species Production », The Journal of Biological Chemistry, vol. 287, no 44, , p. 37245–37258 (ISSN0021-9258, PMID22948140, PMCIDPMC3481323, DOI10.1074/jbc.M112.366195, lire en ligne, consulté le )
pnas.org
(en) Ernesto Bustamante et Peter L. Pedersen, « High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase », Proceedings of the National Academy of Sciences, vol. 74, no 9, , p. 3735–3739 (ISSN0027-8424 et 1091-6490, PMID198801, lire en ligne, consulté le )
Sébastien Bonnet, Stephen L. Archer, Joan Allalunis-Turner et Alois Haromy, « A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth », Cancer Cell, vol. 11, no 1, , p. 37–51 (DOI10.1016/j.ccr.2006.10.020, lire en ligne, consulté le )
(en) Peter L. Pedersen, « Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen », Journal of Bioenergetics and Biomembranes, vol. 39, no 3, , p. 211 (ISSN0145-479X et 1573-6881, DOI10.1007/s10863-007-9094-x, lire en ligne, consulté le )
wayne.edu
elibrary.wayne.edu
Chaim B. Colen, « Gene therapy and radiation of malignant glioma by targeting glioma specific lactate transporter », Wayne State University Library, (lire en ligne, consulté le )
(en) Richard D. Unwin, Rachel A. Craven, Patricia Harnden et Sarah Hanrahan, « Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect », PROTEOMICS, vol. 3, no 8, , p. 1620–1632 (ISSN1615-9861, DOI10.1002/pmic.200300464, lire en ligne, consulté le )