Feuille (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Feuille" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
3rd place
11th place
4th place
12th place
low place
3,232nd place
1,031st place
161st place
149th place
80th place
4,124th place
4,384th place
low place
low place
1,293rd place
405th place
3,158th place
3,502nd place
26th place
110th place
low place
low place
low place
low place
610th place
265th place
857th place
208th place
low place
low place

ajsonline.org

  • (en) Berner, R.A., « Geocarb III : A Revised Model of Atmospheric CO2 over Phanerozoic Time », American Journal of Science, vol. 301, no 2,‎ , p. 182 (DOI 10.2475/ajs.301.2.182, lire en ligne [abstract])

archives-ouvertes.fr

hal.archives-ouvertes.fr

books.google.com

  • (en) Peter A. Thomas, Trees. Their Natural History, Cambridge University Press, (lire en ligne), p. 13.
  • Peter Wohlleben, La Vie secrète des arbres. Ce qu'ils ressentent. Comment ils communiquent, Les Arènes, (lire en ligne), p. 83.
  • Cette propriété serait une stratégie cryptique (la feuille se confond avec l'ambiance lumineuses caractérisée par des taches de soleil) ou un effet visuel (elle apparaît moins grande aux yeux des prédateurs). Cf. (en) Peter D. Moore, Tropical Forests, Infobase Publishing, (lire en ligne), p. 119
  • William G. Hopkins, Physiologie végétale, De Boeck Supérieur, (lire en ligne), p. 143

corante.com

doi.org

dx.doi.org

  • (en) R. L. Chazdon, R. W. Pearcy, « The Importance of Sunflecks for Forest Understory Plants », BioScience, vol. 41, no 11,‎ , p. 760–766 (DOI 10.2307/1311725).
  • (en) John S. Roden, « Modeling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves », Trees, vol. 17, no 2,‎ , p. 117–126 (DOI 10.1007/s00468-002-0213-3).
  • (en) Simcha Lev-Yadun, Gidi Ne'eman, « When may green plants be aposomatic ? », Biological Journal of the Linnean Society, vol. 81, no 3,‎ , p. 413–416 (DOI 10.1111/j.1095-8312.2004.00307.x).
  • La surface réceptrice d’une feuille type est disposée à angle droit par rapport à la lumière incidente. La théorie de Monsi et Saeki prévoit que l’interception lumineuse dépende fortement de l’orientation des feuilles. cf (en) Masami Monsi, Toshiro Saeki, « On the factor light in plant communities and its importance for matter production », Annals of Botany, vol. 95, no 3,‎ , p. 549–567 (DOI 10.1093/aob/mci052)
  • (en) S. Lavorel et E. Garnier, « Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology », British Ecological Society, vol. 16, no 5,‎ , p. 545-556 (DOI 10.1046/j.1365-2435.2002.00664.x)
  • (en) George Carroll, « Fungal Endophytes in Stems and Leaves. From Latent Pathogen to Mutualistic Symbiont », Ecology, vol. 69, no 1,‎ , p. 2-9 (DOI 10.2307/1943154)
  • (en) Crane et Kenrick et Paul Kenrick, « Diverted development of reproductive organs : A source of morphological innovation in land plants », Plant System. And Evol., vol. 206, no 1,‎ , p. 161–174 (DOI 10.1007/BF00987946)
  • (en) Piazza P, et al., « Evolution of leaf developmental mechanisms », New Phytol., vol. 167, no 3,‎ , p. 693–710 (PMID 16101907, DOI 10.1111/j.1469-8137.2005.01466.x)
  • (en) Paul Kenrick, « Palaeontology : Turning over a new leaf », Nature, vol. 410,‎ , p. 309-310 (DOI 10.1038/35066649)
  • (en) Rickards, R.B., « The age of the earliest club mosses : the Silurian Baragwanathia flora in Victoria, Australia », Geological Magazine, vol. 137, no 2,‎ , p. 207–209 (DOI 10.1017/S0016756800003800, lire en ligne [abstract])
  • (en) Kaplan, D.R., « The Science of Plant Morphology : Definition, History, and Role in Modern Biology », American Journal of Botany, vol. 88, no 10,‎ , p. 1711–1741 (DOI 10.2307/3558347, JSTOR 3558347)
  • (en) Taylor, T.N., « Perithecial ascomycetes from the 400 million year old Rhynie chert : an example of ancestral polymorphism », Mycologia, vol. 97,‎ , p. 269–285 (PMID 16389979, DOI 10.3852/mycologia.97.1.269, lire en ligne [abstract])
  • (en) Boyce, C.K., « Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants », Paleobiology, vol. 28,‎ , p. 70–100 (DOI 10.1666/0094-8373(2002)028<0070:EODPAT>2.0.CO;2)
  • (en) Hao, S., « Structure of the Earliest Leaves : Adaptations to High Concentrations of Atmospheric CO2 », International Journal of Plant Sciences, vol. 164,‎ , p. 71–75 (DOI 10.1086/344557)
  • (en) Berner, R.A., « Geocarb III : A Revised Model of Atmospheric CO2 over Phanerozoic Time », American Journal of Science, vol. 301, no 2,‎ , p. 182 (DOI 10.2475/ajs.301.2.182, lire en ligne [abstract])
  • (en) Beerling, D.J., « Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era », Nature, vol. 410, no 6826,‎ , p. 287–394 (PMID 11268207, DOI 10.1038/35066546)
  • (en) Shellito, C.J., « Reconstructing a lost Eocene paradise : Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum », Global and Planetary Change, vol. 50, nos 1-2,‎ , p. 1–17 (DOI 10.1016/j.gloplacha.2005.08.001, lire en ligne)
  • (en) Aerts, R., « The advantages of being evergreen », Trends in Ecology & Evolution, vol. 10, no 10,‎ , p. 402–407 (DOI 10.1016/S0169-5347(00)89156-9)
  • (en) Labandeira, C.C., « Ninety-seven million years of angiosperm-insect association : paleobiological insights into the meaning of coevolution », Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no 25,‎ , p. 12278–12282 (PMID 11607501, PMCID 45420, DOI 10.1073/pnas.91.25.12278)

elsevier.com

linkinghub.elsevier.com

  • (en) Shellito, C.J., « Reconstructing a lost Eocene paradise : Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum », Global and Planetary Change, vol. 50, nos 1-2,‎ , p. 1–17 (DOI 10.1016/j.gloplacha.2005.08.001, lire en ligne)

geoscienceworld.org

geolmag.geoscienceworld.org

  • (en) Rickards, R.B., « The age of the earliest club mosses : the Silurian Baragwanathia flora in Victoria, Australia », Geological Magazine, vol. 137, no 2,‎ , p. 207–209 (DOI 10.1017/S0016756800003800, lire en ligne [abstract])

ipgp.fr

jstor.org

  • (en) Kaplan, D.R., « The Science of Plant Morphology : Definition, History, and Role in Modern Biology », American Journal of Botany, vol. 88, no 10,‎ , p. 1711–1741 (DOI 10.2307/3558347, JSTOR 3558347)

modelgroup.com

  • Daniel Model, « L'arbre est un symbole de puissance », Model Box, no 79,‎ , p. 3 (lire en ligne)

mycologia.org

nih.gov

ncbi.nlm.nih.gov

  • (en) Piazza P, et al., « Evolution of leaf developmental mechanisms », New Phytol., vol. 167, no 3,‎ , p. 693–710 (PMID 16101907, DOI 10.1111/j.1469-8137.2005.01466.x)
  • (en) Taylor, T.N., « Perithecial ascomycetes from the 400 million year old Rhynie chert : an example of ancestral polymorphism », Mycologia, vol. 97,‎ , p. 269–285 (PMID 16389979, DOI 10.3852/mycologia.97.1.269, lire en ligne [abstract])
  • (en) Beerling, D.J., « Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era », Nature, vol. 410, no 6826,‎ , p. 287–394 (PMID 11268207, DOI 10.1038/35066546)
  • (en) Labandeira, C.C., « Ninety-seven million years of angiosperm-insect association : paleobiological insights into the meaning of coevolution », Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no 25,‎ , p. 12278–12282 (PMID 11607501, PMCID 45420, DOI 10.1073/pnas.91.25.12278)

pnas.org

sciencedirect.com

  • (en) TianTian Xiong, Annabelle Austruy, Antoine Pierart, Muhammad Shahid, Eva Schreck, Stéphane Mombo, Camille Dumat (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture ; Journal of Environmental Sciences, Volume 46, pp. 16-27 (résumé)

sciencemag.org

  • (en) T. Karl1, P. Harley, L. Emmons, B. Thornton, A. Guenther, C. Basu, A. Turnipseed et K. Jardine ; Report Efficient Atmospheric Cleansing of Oxidized Organic Trace Gases by Vegetation ; Online 21 October 2010 Science 5 November 2010: Vol. 330 no. 6005 p. 816-819 DOI: 10.1126/science.1192534 ; Résumé en anglais

whiterose.ac.uk

eprints.whiterose.ac.uk

  • (en) Beerling D. et al., « Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era », Nature, vol. 410, no 6826,‎ , p. 352–354 (lire en ligne)