Le contenu de cette section est issu du § 2.3.2 de (en) J. F. Bonnans et A. Shapiro, Perturbation Analysis of Optimization Problems, New York, Springer, (lire en ligne).
On parle ici de singularité au sens large du terme (et donc pas uniquement d'une singularité isolée) c'est-à-dire que la fonction n'est pas analytique en la singularité mais que n'importe quel voisinage ouvert non vide de la singularité contient au moins un point pour lequel la fonction est analytique. Cf. (en) John H. Mathews et Russel W. Howell, Complex Analysis for Mathematics and Engineering, Jones & Bartlett(en), , 3e éd. (lire en ligne), p. 232.
doi.org
dx.doi.org
Dû à (en) C. Ursescu, « Multifunctions with convex closed graph », Czechoslovak Mathematical Journal, vol. 25, no 3, , p. 438-441 et (en) S. M. Robinson, « Regularity and stability for convex multivalued functions », Mathematics of Operations Research, vol. 1, no 2, , p. 130-143 (DOI10.1287/moor.1.2.130).
(en) Raymond E. Smithson, « Some general properties of multi-valued functions », Pacific J. Math., vol. 12, no 2, , p. 681-703 (lire en ligne)
wikipedia.org
en.wikipedia.org
On parle ici de singularité au sens large du terme (et donc pas uniquement d'une singularité isolée) c'est-à-dire que la fonction n'est pas analytique en la singularité mais que n'importe quel voisinage ouvert non vide de la singularité contient au moins un point pour lequel la fonction est analytique. Cf. (en) John H. Mathews et Russel W. Howell, Complex Analysis for Mathematics and Engineering, Jones & Bartlett(en), , 3e éd. (lire en ligne), p. 232.