Jean-Pierre Friedelmeyer, « Dallage de rectangles et fractions continues », Bulletin de l'APMEP, no 450, , p. 91-122 (lire en ligne)
bnf.fr
gallica.bnf.fr
Ces résultats furent édités par Bruyset et Desaint. Ce livre contient les Additions aux Éléments d'Algèbre d'Euler par Lagrange, rééditées dans Joseph-Alfred Serret, Œuvres de Lagrange, vol. VII, Gauthier-Villars, (lire en ligne), p. 5-180. Elles contiennent les deux preuves citées et résument l'essentiel du savoir sur les fractions continues à la fin du XVIIIe siècle.
books.google.com
(en) Julian F. Fleron, « A note on the history of the Cantor set and Cantor function », Mathematics Magazine, vol. 67, , p. 136-140 (lire en ligne).
(en) Josep Rifà Coma, « Decoding a bit more than the BCH bound », dans Gérard Cohen, Algebraic Coding: First French-Israeli Workshop, Paris, France, July 19 - 21, 1993. Proceedings, Springer, (ISBN978-3-540-57843-7, lire en ligne), p. 287-303, p. 288
« It is known that there exists an equivalence between the Extended Euclidean algorithm, Berlekamp-Massey algorithm(en) and the computation of convergents of the continued fraction expansion of a rational fraction [L. R. Welch et R. A. Scholtx, « Continued fractions and Berlekamp's algorithm », IEEE Trans. Inform. Theory, vol. 25, , p. 18-27] ».
cdg82.fr
John Wallis, un mathématicien anglais, rétorqua : il ne trouvera pas mauvais, je crois, que nous lui rendions la pareille, et cela, non pas sur une bagatelle. Ces informations sont extraites de la page Pierre de Fermat sur le site de la commune de Beaumont-de-Lomagne.
L'association à l'algorithme d'Euclide est traité dans cet article. Celui avec les fonctions méromorphes se trouve, par exemple, dans l'étude des approximants de Padé, développée dans Henri Padé, « Recherches sur la convergence des développements en fractions continues d'une certaine catégorie de fonction », ASENS, 3e série, vol. 24, , p. 341-400 (lire en ligne), qui valut à son auteur le Grand prix de l'Académie des sciences de Paris en 1906.
La résolution historique par Joseph-Louis Lagrange figure dans : Joseph-Alfred Serret, Œuvres de Lagrange, t. 1, Gauthier-Villars, (lire en ligne), « Solution d'un Problème d'arithmétique », p. 671-731 (original Bruyset (Lyon) et Desaint (Paris), L. Euler et J. L. Lagrange, Éléments d'algèbre, ).
univ-mrs.fr
irem.univ-mrs.fr
Ces informations, comme l'essentiel de ce paragraphe proviennent de Claude Brezinski, « Ces étranges fractions qui n'en finissent pas », Conférence à l'IREM, Université de La Réunion, « diaporama », (lire en ligne).
(en) Josep Rifà Coma, « Decoding a bit more than the BCH bound », dans Gérard Cohen, Algebraic Coding: First French-Israeli Workshop, Paris, France, July 19 - 21, 1993. Proceedings, Springer, (ISBN978-3-540-57843-7, lire en ligne), p. 287-303, p. 288
« It is known that there exists an equivalence between the Extended Euclidean algorithm, Berlekamp-Massey algorithm(en) and the computation of convergents of the continued fraction expansion of a rational fraction [L. R. Welch et R. A. Scholtx, « Continued fractions and Berlekamp's algorithm », IEEE Trans. Inform. Theory, vol. 25, , p. 18-27] ».