Philosophical beauties selected from the works of John Locke - p. 237 T.Hurst 1802 [récupéré 2015-3-28](ed. Locke writes: And hence it is, that in disputes and reasonings concerning eternity, or any other infinite, we are apt to blunder, and involve ourselves in manifest absurdities...)
(en) Ignacio Jané, « The role of the absolute infinite in Cantor's conception of set », Erkenntnis, vol. 42, no 3, , p. 375-402 (DOI10.1007/BF01129011), §3.2
(en) Jean-Paul Reding, Comparative essays in early Greek and Chinese rational thinking [« Essais comparatifs de la pensée rationnelle en Grèce et en Chine anciennes »], Londres, Routledge, Taylor & Francis Group, , 238 p. (ISBN1351950061, présentation en ligne, lire en ligne), page 99. Première édition par Graham éditeur en 1978.
(en) Julius Thomas Fraser; Nathaniel Morris Lawrence; Francis C. Haber; International Society for the Study of Time, Zhang Yinzhi : Time, Science, and Society in China and the West [« Zhang Yinzhi : Le Temps, la Science et la Société en Chine et en Occident »], Amherst (Massachusetts), Macmillan Publishers/University of Massachusetts Press, coll. « The study of time, 0001 », , 262 p. (ISBN0870234951, présentation en ligne, lire en ligne), page 206.
Consulter en ligne le Dictionnaire Gaffiot, aux entrées : → (la + fr) Félix Gaffiot, « infīnītus », p. 814 ; → « fīnĭo, fīnis », sur lexilogos.com, (consulté le ), p. 668
Cette acception de « nombre indéfini et très grand » pour le mot latin millě est attestée chez Tite-Live, Virgile et Horace selon le dictionnaire Gaffiot : (la + fr) Félix Gaffiot, « entrée : millě », sur lexilogos.com, (consulté le ), p. 976.
Pascal, Blaise (Descotes, D; Proust, G) - Disproportion de l’homme Bibliothèque nationale de France, Universités à Clermont-Ferrand "La fin des choses et leurs principes sont pour lui invinciblement cachés dans un secret impénétrable, également incapable de voir le néant d’où il est tiré et l’infini où il est englouti." - "Manque d’avoir contemplé ces infinis, les hommes se sont portés témérairement à la recherche de la nature comme s’ils avaient quelque proportion avec elle." "C’est une chose étrange qu’ils ont voulu comprendre les principes des choses et de là arriver jusqu’à connaître tout, par une présomption aussi infinie que leur objet. Car il est sans doute qu’on ne peut former ce dessein sans une présomption ou sans une capacité infinie, comme la nature" - 8 décembre 2018
pourlascience.fr
Maria Reményi, « Histoire d'infini », Pour la Science, no 278, , § introductif (lire en ligne, consulté le ).
Ainsi, selon le philosophe des mathématiques Jean-Toussaint Desanti, « on trouve chez Spinoza, dans la première partie de L'Éthique, l'expression achevée [...] d'un concept philosophique pleinement élaboré de l'infini ». Lire en ligne, dans l'Encyclopædia Universalis : Jean Toussaint Desanti, « INFINI, mathématiques », sur universalis.fr (consulté le ), Introduction.
(en) Jean-Paul Reding, Comparative essays in early Greek and Chinese rational thinking [« Essais comparatifs de la pensée rationnelle en Grèce et en Chine anciennes »], Londres, Routledge, Taylor & Francis Group, , 238 p. (ISBN1351950061, présentation en ligne, lire en ligne), page 99. Première édition par Graham éditeur en 1978.
(en) Julius Thomas Fraser; Nathaniel Morris Lawrence; Francis C. Haber; International Society for the Study of Time, Zhang Yinzhi : Time, Science, and Society in China and the West [« Zhang Yinzhi : Le Temps, la Science et la Société en Chine et en Occident »], Amherst (Massachusetts), Macmillan Publishers/University of Massachusetts Press, coll. « The study of time, 0001 », , 262 p. (ISBN0870234951, présentation en ligne, lire en ligne), page 206.