(en) Rakesh K. Jain, Ricky T. Tong et Lance L. Munn, « Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model », Cancer Research, vol. 67, no 6, , p. 2729–2735 (ISSN0008-5472 et 1538-7445, PMID17363594, PMCIDPMC3022341, DOI10.1158/0008-5472.CAN-06-4102, lire en ligne, consulté le )
(en) Tord Hompland, Christine Ellingsen, Kirsti Marie Øvrebø et Einar K. Rofstad, « Interstitial Fluid Pressure and Associated Lymph Node Metastasis Revealed in Tumors by Dynamic Contrast-Enhanced MRI », Cancer Research, vol. 72, no 19, , p. 4899–4908 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-12-0903, lire en ligne, consulté le )
(en) Amine Issa, Thomas X. Le, Alexander N. Shoushtari et Jacqueline D. Shields, « Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell–Lymphatic Cross-talk Promote Invasive Phenotype », Cancer Research, vol. 69, no 1, , p. 349–357 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-08-1875, lire en ligne, consulté le )
(en) Masayuki Nagahashi, Subramaniam Ramachandran, Eugene Y. Kim et Jeremy C. Allegood, « Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis », Cancer Research, vol. 72, no 3, , p. 726–735 (ISSN0008-5472 et 1538-7445, PMID22298596, PMCIDPMC3289261, DOI10.1158/0008-5472.CAN-11-2167, lire en ligne, consulté le )
(en) Georg Gasteiger, Marco Ataide et Wolfgang Kastenmüller, « Lymph node – an organ for T‐cell activation and pathogen defense », Immunological Reviews, vol. 271, no 1, , p. 200–220 (ISSN0105-2896 et 1600-065X, DOI10.1111/imr.12399, lire en ligne, consulté le )
(en) Antonella Obinu, Elisabetta Gavini, Giovanna Rassu et Marcello Maestri, « Lymph node metastases: importance of detection and treatment strategies », Expert Opinion on Drug Delivery, vol. 15, no 5, , p. 459–467 (ISSN1742-5247 et 1744-7593, DOI10.1080/17425247.2018.1446937, lire en ligne, consulté le )
Akira Takeda, Marko Salmi et Sirpa Jalkanen, « Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system », Trends in Immunology, vol. 44, no 1, , p. 72–86 (ISSN1471-4906, DOI10.1016/j.it.2022.10.010, lire en ligne, consulté le )
Guy Sainte‐Marie, « The Lymph Node Revisited: Development, Morphology, Functioning, and Role in Triggering Primary Immune Responses », The Anatomical Record, vol. 293, no 2, , p. 320–337 (ISSN1932-8486 et 1932-8494, DOI10.1002/ar.21051, lire en ligne, consulté le )
(en) Sirpa Jalkanen et Marko Salmi, « Lymphatic endothelial cells of the lymph node », Nature Reviews Immunology, vol. 20, no 9, , p. 566–578 (ISSN1474-1741, DOI10.1038/s41577-020-0281-x, lire en ligne, consulté le )
(en) Akshay T. Krishnamurty et Shannon J. Turley, « Lymph node stromal cells: cartographers of the immune system », Nature Immunology, vol. 21, no 4, , p. 369–380 (ISSN1529-2916, DOI10.1038/s41590-020-0635-3, lire en ligne, consulté le )
(en) Jean-Philippe Girard, Christine Moussion et Reinhold Förster, « HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes », Nature Reviews Immunology, vol. 12, no 11, , p. 762–773 (ISSN1474-1741, DOI10.1038/nri3298, lire en ligne, consulté le )
Mario Novkovic, Lucas Onder, Gennady Bocharov et Burkhard Ludewig, « Topological Structure and Robustness of the Lymph Node Conduit System », Cell Reports, vol. 30, no 3, , p. 893–904.e6 (ISSN2211-1247, DOI10.1016/j.celrep.2019.12.070, lire en ligne, consulté le )
Sophie E. Acton, Lucas Onder, Mario Novkovic et Victor G. Martinez, « Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks », Trends in Immunology, vol. 42, no 9, , p. 782–794 (ISSN1471-4906, DOI10.1016/j.it.2021.07.003, lire en ligne, consulté le )
(en) Natalie L. Trevaskis, Lisa M. Kaminskas et Christopher J. H. Porter, « From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity », Nature Reviews Drug Discovery, vol. 14, no 11, , p. 781–803 (ISSN1474-1784, DOI10.1038/nrd4608, lire en ligne, consulté le )
(en) Gautier Follain, David Herrmann, Sébastien Harlepp et Vincent Hyenne, « Fluids and their mechanics in tumour transit: shaping metastasis », Nature Reviews Cancer, vol. 20, no 2, , p. 107–124 (ISSN1474-1768, DOI10.1038/s41568-019-0221-x, lire en ligne, consulté le )
(en) Melody A. Swartz et Amanda W. Lund, « Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity », Nature Reviews Cancer, vol. 12, no 3, , p. 210–219 (ISSN1474-1768, DOI10.1038/nrc3186, lire en ligne, consulté le )
(en) Rakesh K. Jain, Ricky T. Tong et Lance L. Munn, « Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model », Cancer Research, vol. 67, no 6, , p. 2729–2735 (ISSN0008-5472 et 1538-7445, PMID17363594, PMCIDPMC3022341, DOI10.1158/0008-5472.CAN-06-4102, lire en ligne, consulté le )
(en) Tord Hompland, Christine Ellingsen, Kirsti Marie Øvrebø et Einar K. Rofstad, « Interstitial Fluid Pressure and Associated Lymph Node Metastasis Revealed in Tumors by Dynamic Contrast-Enhanced MRI », Cancer Research, vol. 72, no 19, , p. 4899–4908 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-12-0903, lire en ligne, consulté le )
(en) R. Chase Cornelison, Caroline E. Brennan, Kathryn M. Kingsmore et Jennifer M. Munson, « Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model », Scientific Reports, vol. 8, no 1, , p. 17057 (ISSN2045-2322, PMID30451884, PMCIDPMC6242861, DOI10.1038/s41598-018-35141-9, lire en ligne, consulté le )
Jacqueline D. Shields, Mark E. Fleury, Carolyn Yong et Alice A. Tomei, « Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics via Interstitial Flow and Autocrine CCR7 Signaling », Cancer Cell, vol. 11, no 6, , p. 526–538 (ISSN1535-6108, DOI10.1016/j.ccr.2007.04.020, lire en ligne, consulté le )
(en) Amine Issa, Thomas X. Le, Alexander N. Shoushtari et Jacqueline D. Shields, « Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell–Lymphatic Cross-talk Promote Invasive Phenotype », Cancer Research, vol. 69, no 1, , p. 349–357 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-08-1875, lire en ligne, consulté le )
T. Makinen, « Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3 », The EMBO Journal, vol. 20, no 17, , p. 4762–4773 (PMID11532940, PMCIDPMC125596, DOI10.1093/emboj/20.17.4762, lire en ligne, consulté le )
(en) Jay W. Shin, Michael Min, Fréderic Larrieu-Lahargue et Xavier Canron, « Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis », Molecular Biology of the Cell, vol. 17, no 2, , p. 576–584 (ISSN1059-1524 et 1939-4586, PMID16291864, PMCIDPMC1356570, DOI10.1091/mbc.e05-04-0368, lire en ligne, consulté le )
Renhai Cao, Meit A. Björndahl, Piotr Religa et Steve Clasper, « PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis », Cancer Cell, vol. 6, no 4, , p. 333–345 (ISSN1535-6108, DOI10.1016/j.ccr.2004.08.034, lire en ligne, consulté le )
Guibin Zhao, Guangwei Zhu, Yongjian Huang et Wei Zheng, « IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer », Oncology Reports, vol. 35, no 3, , p. 1787–1795 (ISSN1021-335X, DOI10.3892/or.2016.4544, lire en ligne, consulté le )
(en) Xi Chen, Qichao Xie, Xiaoming Cheng et Xinwei Diao, « Role of interleukin‐17 in lymphangiogenesis in non‐small‐cell lung cancer: Enhanced production of vascular endothelial growth factor C in non‐small‐cell lung carcinoma cells », Cancer Science, vol. 101, no 11, , p. 2384–2390 (ISSN1347-9032 et 1349-7006, DOI10.1111/j.1349-7006.2010.01684.x, lire en ligne, consulté le )
Débora C Bastos, Jenny Paupert, Catherine Maillard et Fabiana Seguin, « Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model », Laboratory Investigation, vol. 97, no 2, , p. 194–206 (ISSN0023-6837, DOI10.1038/labinvest.2016.125, lire en ligne, consulté le )
Hidefumi Kubo, Kanako Hosono, Tatsunori Suzuki et Yasufumi Ogawa, « Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis », Biomedicine & Pharmacotherapy, vol. 64, no 2, , p. 101–106 (ISSN0753-3322, DOI10.1016/j.biopha.2009.04.039, lire en ligne, consulté le )
(en) Masayuki Nagahashi, Subramaniam Ramachandran, Eugene Y. Kim et Jeremy C. Allegood, « Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis », Cancer Research, vol. 72, no 3, , p. 726–735 (ISSN0008-5472 et 1538-7445, PMID22298596, PMCIDPMC3289261, DOI10.1158/0008-5472.CAN-11-2167, lire en ligne, consulté le )
Yueh-Chien Lin, Chien-Chin Chen, Wei-Min Chen et Kuan-Ying Lu, « LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer », Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1863, no 10, , p. 1305–1315 (ISSN1388-1981, DOI10.1016/j.bbalip.2018.07.005, lire en ligne, consulté le )
Elena Tutunea-Fatan, Mousumi Majumder, Xiping Xin et Peeyush K. Lala, « The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis », Molecular Cancer, vol. 14, no 1, , p. 35 (ISSN1476-4598, DOI10.1186/s12943-015-0306-4, lire en ligne, consulté le )
Paweł Bieniasz-Krzywiec, Rosa Martín-Pérez, Manuel Ehling et Melissa García-Caballero, « Podoplanin-Expressing Macrophages Promote Lymphangiogenesis and Lymphoinvasion in Breast Cancer », Cell Metabolism, vol. 30, no 5, , p. 917–936.e10 (ISSN1550-4131, DOI10.1016/j.cmet.2019.07.015, lire en ligne, consulté le )
(en) Wang He, Guangzheng Zhong, Ning Jiang et Bo Wang, « Long noncoding RNA BLACAT2 promotes bladder cancer–associated lymphangiogenesis and lymphatic metastasis », The Journal of Clinical Investigation, vol. 128, no 2, , p. 861–875 (ISSN0021-9738, PMID29355840, PMCIDPMC5785244, DOI10.1172/JCI96218, lire en ligne, consulté le )
Shaoquan Zheng, Lu Yang, Yutian Zou et Jie-ying Liang, « Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer », Journal of Hematology & Oncology, vol. 13, no 1, , p. 17 (ISSN1756-8722, PMID32138762, PMCIDPMC7059688, DOI10.1186/s13045-020-00852-y, lire en ligne, consulté le )
Akira Takeda, Marko Salmi et Sirpa Jalkanen, « Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system », Trends in Immunology, vol. 44, no 1, , p. 72–86 (ISSN1471-4906, DOI10.1016/j.it.2022.10.010, lire en ligne, consulté le )
Mario Novkovic, Lucas Onder, Gennady Bocharov et Burkhard Ludewig, « Topological Structure and Robustness of the Lymph Node Conduit System », Cell Reports, vol. 30, no 3, , p. 893–904.e6 (ISSN2211-1247, DOI10.1016/j.celrep.2019.12.070, lire en ligne, consulté le )
Sophie E. Acton, Lucas Onder, Mario Novkovic et Victor G. Martinez, « Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks », Trends in Immunology, vol. 42, no 9, , p. 782–794 (ISSN1471-4906, DOI10.1016/j.it.2021.07.003, lire en ligne, consulté le )
Jacqueline D. Shields, Mark E. Fleury, Carolyn Yong et Alice A. Tomei, « Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics via Interstitial Flow and Autocrine CCR7 Signaling », Cancer Cell, vol. 11, no 6, , p. 526–538 (ISSN1535-6108, DOI10.1016/j.ccr.2007.04.020, lire en ligne, consulté le )
Renhai Cao, Meit A. Björndahl, Piotr Religa et Steve Clasper, « PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis », Cancer Cell, vol. 6, no 4, , p. 333–345 (ISSN1535-6108, DOI10.1016/j.ccr.2004.08.034, lire en ligne, consulté le )
Débora C Bastos, Jenny Paupert, Catherine Maillard et Fabiana Seguin, « Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model », Laboratory Investigation, vol. 97, no 2, , p. 194–206 (ISSN0023-6837, DOI10.1038/labinvest.2016.125, lire en ligne, consulté le )
Hidefumi Kubo, Kanako Hosono, Tatsunori Suzuki et Yasufumi Ogawa, « Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis », Biomedicine & Pharmacotherapy, vol. 64, no 2, , p. 101–106 (ISSN0753-3322, DOI10.1016/j.biopha.2009.04.039, lire en ligne, consulté le )
Yueh-Chien Lin, Chien-Chin Chen, Wei-Min Chen et Kuan-Ying Lu, « LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer », Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1863, no 10, , p. 1305–1315 (ISSN1388-1981, DOI10.1016/j.bbalip.2018.07.005, lire en ligne, consulté le )
Elena Tutunea-Fatan, Mousumi Majumder, Xiping Xin et Peeyush K. Lala, « The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis », Molecular Cancer, vol. 14, no 1, , p. 35 (ISSN1476-4598, DOI10.1186/s12943-015-0306-4, lire en ligne, consulté le )
Paweł Bieniasz-Krzywiec, Rosa Martín-Pérez, Manuel Ehling et Melissa García-Caballero, « Podoplanin-Expressing Macrophages Promote Lymphangiogenesis and Lymphoinvasion in Breast Cancer », Cell Metabolism, vol. 30, no 5, , p. 917–936.e10 (ISSN1550-4131, DOI10.1016/j.cmet.2019.07.015, lire en ligne, consulté le )
Shaoquan Zheng, Lu Yang, Yutian Zou et Jie-ying Liang, « Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer », Journal of Hematology & Oncology, vol. 13, no 1, , p. 17 (ISSN1756-8722, PMID32138762, PMCIDPMC7059688, DOI10.1186/s13045-020-00852-y, lire en ligne, consulté le )
T. Makinen, « Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3 », The EMBO Journal, vol. 20, no 17, , p. 4762–4773 (PMID11532940, PMCIDPMC125596, DOI10.1093/emboj/20.17.4762, lire en ligne, consulté le )
(en) Georg Gasteiger, Marco Ataide et Wolfgang Kastenmüller, « Lymph node – an organ for T‐cell activation and pathogen defense », Immunological Reviews, vol. 271, no 1, , p. 200–220 (ISSN0105-2896 et 1600-065X, DOI10.1111/imr.12399, lire en ligne, consulté le )
(en) Antonella Obinu, Elisabetta Gavini, Giovanna Rassu et Marcello Maestri, « Lymph node metastases: importance of detection and treatment strategies », Expert Opinion on Drug Delivery, vol. 15, no 5, , p. 459–467 (ISSN1742-5247 et 1744-7593, DOI10.1080/17425247.2018.1446937, lire en ligne, consulté le )
Akira Takeda, Marko Salmi et Sirpa Jalkanen, « Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system », Trends in Immunology, vol. 44, no 1, , p. 72–86 (ISSN1471-4906, DOI10.1016/j.it.2022.10.010, lire en ligne, consulté le )
Guy Sainte‐Marie, « The Lymph Node Revisited: Development, Morphology, Functioning, and Role in Triggering Primary Immune Responses », The Anatomical Record, vol. 293, no 2, , p. 320–337 (ISSN1932-8486 et 1932-8494, DOI10.1002/ar.21051, lire en ligne, consulté le )
(en) Sirpa Jalkanen et Marko Salmi, « Lymphatic endothelial cells of the lymph node », Nature Reviews Immunology, vol. 20, no 9, , p. 566–578 (ISSN1474-1741, DOI10.1038/s41577-020-0281-x, lire en ligne, consulté le )
(en) Akshay T. Krishnamurty et Shannon J. Turley, « Lymph node stromal cells: cartographers of the immune system », Nature Immunology, vol. 21, no 4, , p. 369–380 (ISSN1529-2916, DOI10.1038/s41590-020-0635-3, lire en ligne, consulté le )
(en) Jean-Philippe Girard, Christine Moussion et Reinhold Förster, « HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes », Nature Reviews Immunology, vol. 12, no 11, , p. 762–773 (ISSN1474-1741, DOI10.1038/nri3298, lire en ligne, consulté le )
Mario Novkovic, Lucas Onder, Gennady Bocharov et Burkhard Ludewig, « Topological Structure and Robustness of the Lymph Node Conduit System », Cell Reports, vol. 30, no 3, , p. 893–904.e6 (ISSN2211-1247, DOI10.1016/j.celrep.2019.12.070, lire en ligne, consulté le )
Sophie E. Acton, Lucas Onder, Mario Novkovic et Victor G. Martinez, « Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks », Trends in Immunology, vol. 42, no 9, , p. 782–794 (ISSN1471-4906, DOI10.1016/j.it.2021.07.003, lire en ligne, consulté le )
(en) Natalie L. Trevaskis, Lisa M. Kaminskas et Christopher J. H. Porter, « From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity », Nature Reviews Drug Discovery, vol. 14, no 11, , p. 781–803 (ISSN1474-1784, DOI10.1038/nrd4608, lire en ligne, consulté le )
(en) Gautier Follain, David Herrmann, Sébastien Harlepp et Vincent Hyenne, « Fluids and their mechanics in tumour transit: shaping metastasis », Nature Reviews Cancer, vol. 20, no 2, , p. 107–124 (ISSN1474-1768, DOI10.1038/s41568-019-0221-x, lire en ligne, consulté le )
(en) Melody A. Swartz et Amanda W. Lund, « Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity », Nature Reviews Cancer, vol. 12, no 3, , p. 210–219 (ISSN1474-1768, DOI10.1038/nrc3186, lire en ligne, consulté le )
(en) Rakesh K. Jain, Ricky T. Tong et Lance L. Munn, « Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model », Cancer Research, vol. 67, no 6, , p. 2729–2735 (ISSN0008-5472 et 1538-7445, PMID17363594, PMCIDPMC3022341, DOI10.1158/0008-5472.CAN-06-4102, lire en ligne, consulté le )
(en) Tord Hompland, Christine Ellingsen, Kirsti Marie Øvrebø et Einar K. Rofstad, « Interstitial Fluid Pressure and Associated Lymph Node Metastasis Revealed in Tumors by Dynamic Contrast-Enhanced MRI », Cancer Research, vol. 72, no 19, , p. 4899–4908 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-12-0903, lire en ligne, consulté le )
(en) R. Chase Cornelison, Caroline E. Brennan, Kathryn M. Kingsmore et Jennifer M. Munson, « Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model », Scientific Reports, vol. 8, no 1, , p. 17057 (ISSN2045-2322, PMID30451884, PMCIDPMC6242861, DOI10.1038/s41598-018-35141-9, lire en ligne, consulté le )
Jacqueline D. Shields, Mark E. Fleury, Carolyn Yong et Alice A. Tomei, « Autologous Chemotaxis as a Mechanism of Tumor Cell Homing to Lymphatics via Interstitial Flow and Autocrine CCR7 Signaling », Cancer Cell, vol. 11, no 6, , p. 526–538 (ISSN1535-6108, DOI10.1016/j.ccr.2007.04.020, lire en ligne, consulté le )
(en) Amine Issa, Thomas X. Le, Alexander N. Shoushtari et Jacqueline D. Shields, « Vascular Endothelial Growth Factor-C and C-C Chemokine Receptor 7 in Tumor Cell–Lymphatic Cross-talk Promote Invasive Phenotype », Cancer Research, vol. 69, no 1, , p. 349–357 (ISSN0008-5472 et 1538-7445, DOI10.1158/0008-5472.CAN-08-1875, lire en ligne, consulté le )
(en) Jay W. Shin, Michael Min, Fréderic Larrieu-Lahargue et Xavier Canron, « Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis », Molecular Biology of the Cell, vol. 17, no 2, , p. 576–584 (ISSN1059-1524 et 1939-4586, PMID16291864, PMCIDPMC1356570, DOI10.1091/mbc.e05-04-0368, lire en ligne, consulté le )
Renhai Cao, Meit A. Björndahl, Piotr Religa et Steve Clasper, « PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis », Cancer Cell, vol. 6, no 4, , p. 333–345 (ISSN1535-6108, DOI10.1016/j.ccr.2004.08.034, lire en ligne, consulté le )
Guibin Zhao, Guangwei Zhu, Yongjian Huang et Wei Zheng, « IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer », Oncology Reports, vol. 35, no 3, , p. 1787–1795 (ISSN1021-335X, DOI10.3892/or.2016.4544, lire en ligne, consulté le )
(en) Xi Chen, Qichao Xie, Xiaoming Cheng et Xinwei Diao, « Role of interleukin‐17 in lymphangiogenesis in non‐small‐cell lung cancer: Enhanced production of vascular endothelial growth factor C in non‐small‐cell lung carcinoma cells », Cancer Science, vol. 101, no 11, , p. 2384–2390 (ISSN1347-9032 et 1349-7006, DOI10.1111/j.1349-7006.2010.01684.x, lire en ligne, consulté le )
Débora C Bastos, Jenny Paupert, Catherine Maillard et Fabiana Seguin, « Effects of fatty acid synthase inhibitors on lymphatic vessels: an in vitro and in vivo study in a melanoma model », Laboratory Investigation, vol. 97, no 2, , p. 194–206 (ISSN0023-6837, DOI10.1038/labinvest.2016.125, lire en ligne, consulté le )
Hidefumi Kubo, Kanako Hosono, Tatsunori Suzuki et Yasufumi Ogawa, « Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis », Biomedicine & Pharmacotherapy, vol. 64, no 2, , p. 101–106 (ISSN0753-3322, DOI10.1016/j.biopha.2009.04.039, lire en ligne, consulté le )
(en) Masayuki Nagahashi, Subramaniam Ramachandran, Eugene Y. Kim et Jeremy C. Allegood, « Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis », Cancer Research, vol. 72, no 3, , p. 726–735 (ISSN0008-5472 et 1538-7445, PMID22298596, PMCIDPMC3289261, DOI10.1158/0008-5472.CAN-11-2167, lire en ligne, consulté le )
Yueh-Chien Lin, Chien-Chin Chen, Wei-Min Chen et Kuan-Ying Lu, « LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer », Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol. 1863, no 10, , p. 1305–1315 (ISSN1388-1981, DOI10.1016/j.bbalip.2018.07.005, lire en ligne, consulté le )
Elena Tutunea-Fatan, Mousumi Majumder, Xiping Xin et Peeyush K. Lala, « The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis », Molecular Cancer, vol. 14, no 1, , p. 35 (ISSN1476-4598, DOI10.1186/s12943-015-0306-4, lire en ligne, consulté le )
Paweł Bieniasz-Krzywiec, Rosa Martín-Pérez, Manuel Ehling et Melissa García-Caballero, « Podoplanin-Expressing Macrophages Promote Lymphangiogenesis and Lymphoinvasion in Breast Cancer », Cell Metabolism, vol. 30, no 5, , p. 917–936.e10 (ISSN1550-4131, DOI10.1016/j.cmet.2019.07.015, lire en ligne, consulté le )
(en) Wang He, Guangzheng Zhong, Ning Jiang et Bo Wang, « Long noncoding RNA BLACAT2 promotes bladder cancer–associated lymphangiogenesis and lymphatic metastasis », The Journal of Clinical Investigation, vol. 128, no 2, , p. 861–875 (ISSN0021-9738, PMID29355840, PMCIDPMC5785244, DOI10.1172/JCI96218, lire en ligne, consulté le )
Shaoquan Zheng, Lu Yang, Yutian Zou et Jie-ying Liang, « Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer », Journal of Hematology & Oncology, vol. 13, no 1, , p. 17 (ISSN1756-8722, PMID32138762, PMCIDPMC7059688, DOI10.1186/s13045-020-00852-y, lire en ligne, consulté le )
(en) Wang He, Guangzheng Zhong, Ning Jiang et Bo Wang, « Long noncoding RNA BLACAT2 promotes bladder cancer–associated lymphangiogenesis and lymphatic metastasis », The Journal of Clinical Investigation, vol. 128, no 2, , p. 861–875 (ISSN0021-9738, PMID29355840, PMCIDPMC5785244, DOI10.1172/JCI96218, lire en ligne, consulté le )
(en) Jay W. Shin, Michael Min, Fréderic Larrieu-Lahargue et Xavier Canron, « Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis », Molecular Biology of the Cell, vol. 17, no 2, , p. 576–584 (ISSN1059-1524 et 1939-4586, PMID16291864, PMCIDPMC1356570, DOI10.1091/mbc.e05-04-0368, lire en ligne, consulté le )
nature.com
(en) Sirpa Jalkanen et Marko Salmi, « Lymphatic endothelial cells of the lymph node », Nature Reviews Immunology, vol. 20, no 9, , p. 566–578 (ISSN1474-1741, DOI10.1038/s41577-020-0281-x, lire en ligne, consulté le )
(en) Akshay T. Krishnamurty et Shannon J. Turley, « Lymph node stromal cells: cartographers of the immune system », Nature Immunology, vol. 21, no 4, , p. 369–380 (ISSN1529-2916, DOI10.1038/s41590-020-0635-3, lire en ligne, consulté le )
(en) Jean-Philippe Girard, Christine Moussion et Reinhold Förster, « HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes », Nature Reviews Immunology, vol. 12, no 11, , p. 762–773 (ISSN1474-1741, DOI10.1038/nri3298, lire en ligne, consulté le )
(en) Natalie L. Trevaskis, Lisa M. Kaminskas et Christopher J. H. Porter, « From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity », Nature Reviews Drug Discovery, vol. 14, no 11, , p. 781–803 (ISSN1474-1784, DOI10.1038/nrd4608, lire en ligne, consulté le )
(en) Gautier Follain, David Herrmann, Sébastien Harlepp et Vincent Hyenne, « Fluids and their mechanics in tumour transit: shaping metastasis », Nature Reviews Cancer, vol. 20, no 2, , p. 107–124 (ISSN1474-1768, DOI10.1038/s41568-019-0221-x, lire en ligne, consulté le )
(en) Melody A. Swartz et Amanda W. Lund, « Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity », Nature Reviews Cancer, vol. 12, no 3, , p. 210–219 (ISSN1474-1768, DOI10.1038/nrc3186, lire en ligne, consulté le )
(en) R. Chase Cornelison, Caroline E. Brennan, Kathryn M. Kingsmore et Jennifer M. Munson, « Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model », Scientific Reports, vol. 8, no 1, , p. 17057 (ISSN2045-2322, PMID30451884, PMCIDPMC6242861, DOI10.1038/s41598-018-35141-9, lire en ligne, consulté le )
(en) Rakesh K. Jain, Ricky T. Tong et Lance L. Munn, « Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model », Cancer Research, vol. 67, no 6, , p. 2729–2735 (ISSN0008-5472 et 1538-7445, PMID17363594, PMCIDPMC3022341, DOI10.1158/0008-5472.CAN-06-4102, lire en ligne, consulté le )
(en) R. Chase Cornelison, Caroline E. Brennan, Kathryn M. Kingsmore et Jennifer M. Munson, « Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model », Scientific Reports, vol. 8, no 1, , p. 17057 (ISSN2045-2322, PMID30451884, PMCIDPMC6242861, DOI10.1038/s41598-018-35141-9, lire en ligne, consulté le )
T. Makinen, « Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3 », The EMBO Journal, vol. 20, no 17, , p. 4762–4773 (PMID11532940, PMCIDPMC125596, DOI10.1093/emboj/20.17.4762, lire en ligne, consulté le )
(en) Jay W. Shin, Michael Min, Fréderic Larrieu-Lahargue et Xavier Canron, « Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis », Molecular Biology of the Cell, vol. 17, no 2, , p. 576–584 (ISSN1059-1524 et 1939-4586, PMID16291864, PMCIDPMC1356570, DOI10.1091/mbc.e05-04-0368, lire en ligne, consulté le )
(en) Masayuki Nagahashi, Subramaniam Ramachandran, Eugene Y. Kim et Jeremy C. Allegood, « Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis », Cancer Research, vol. 72, no 3, , p. 726–735 (ISSN0008-5472 et 1538-7445, PMID22298596, PMCIDPMC3289261, DOI10.1158/0008-5472.CAN-11-2167, lire en ligne, consulté le )
(en) Wang He, Guangzheng Zhong, Ning Jiang et Bo Wang, « Long noncoding RNA BLACAT2 promotes bladder cancer–associated lymphangiogenesis and lymphatic metastasis », The Journal of Clinical Investigation, vol. 128, no 2, , p. 861–875 (ISSN0021-9738, PMID29355840, PMCIDPMC5785244, DOI10.1172/JCI96218, lire en ligne, consulté le )
Shaoquan Zheng, Lu Yang, Yutian Zou et Jie-ying Liang, « Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer », Journal of Hematology & Oncology, vol. 13, no 1, , p. 17 (ISSN1756-8722, PMID32138762, PMCIDPMC7059688, DOI10.1186/s13045-020-00852-y, lire en ligne, consulté le )
Guibin Zhao, Guangwei Zhu, Yongjian Huang et Wei Zheng, « IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer », Oncology Reports, vol. 35, no 3, , p. 1787–1795 (ISSN1021-335X, DOI10.3892/or.2016.4544, lire en ligne, consulté le )
tandfonline.com
(en) Antonella Obinu, Elisabetta Gavini, Giovanna Rassu et Marcello Maestri, « Lymph node metastases: importance of detection and treatment strategies », Expert Opinion on Drug Delivery, vol. 15, no 5, , p. 459–467 (ISSN1742-5247 et 1744-7593, DOI10.1080/17425247.2018.1446937, lire en ligne, consulté le )
(en) Georg Gasteiger, Marco Ataide et Wolfgang Kastenmüller, « Lymph node – an organ for T‐cell activation and pathogen defense », Immunological Reviews, vol. 271, no 1, , p. 200–220 (ISSN0105-2896 et 1600-065X, DOI10.1111/imr.12399, lire en ligne, consulté le )
(en) Xi Chen, Qichao Xie, Xiaoming Cheng et Xinwei Diao, « Role of interleukin‐17 in lymphangiogenesis in non‐small‐cell lung cancer: Enhanced production of vascular endothelial growth factor C in non‐small‐cell lung carcinoma cells », Cancer Science, vol. 101, no 11, , p. 2384–2390 (ISSN1347-9032 et 1349-7006, DOI10.1111/j.1349-7006.2010.01684.x, lire en ligne, consulté le )