(en) Bart Vanhaesebroeck, Julie Guillermet-Guibert, Mariona Graupera et Benoit Bilanges, « The emerging mechanisms of isoform-specific PI3K signalling », Nature Reviews Molecular Cell Biology, vol. 11, no 5, , p. 329–341 (ISSN1471-0080, DOI10.1038/nrm2882, lire en ligne, consulté le )
(en) Lauren M. Thorpe, Haluk Yuzugullu et Jean J. Zhao, « PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting », Nature Reviews Cancer, vol. 15, no 1, , p. 7–24 (ISSN1474-1768, PMID25533673, PMCIDPMC4384662, DOI10.1038/nrc3860, lire en ligne, consulté le )
Ariella B. Hanker, Virginia Kaklamani, Carlos L. Arteaga; Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discov 1 April 2019; 9 (4): 482–491. DOI10.1158/2159-8290.CD-18-1175.
Wendan Xu, Philipp Berning, Georg Lenz; Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021; 138 (13): 1110–1119. DOI10.1182/blood.2020006784.
Juliane Paul, Maurice Soujon, Antje M. Wengner et Sabine Zitzmann-Kolbe, « Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT », Cancer Cell, vol. 31, no 1, , p. 64–78 (ISSN1535-6108, DOI10.1016/j.ccell.2016.12.003, lire en ligne, consulté le )
(en) Zitong Wang, Ziyu Gao, Yinghong Zheng et Jiayuan Kou, « Melatonin inhibits atherosclerosis progression via galectin‐3 downregulation to enhance autophagy and inhibit inflammation », Journal of Pineal Research, vol. 74, no 3, (ISSN0742-3098 et 1600-079X, DOI10.1111/jpi.12855, lire en ligne, consulté le )
Lingjun Chen, Xianyi Lin, Yiming Lei et Xuan Xu, « Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling », Journal of Experimental & Clinical Cancer Research, vol. 41, no 1, , p. 329 (ISSN1756-9966, PMID36411480, PMCIDPMC9677649, DOI10.1186/s13046-022-02531-x, lire en ligne, consulté le )
Mounira Chalabi-Dchar, Stéphanie Cassant-Sourdy, Camille Duluc et Marjorie Fanjul, « Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16 », Gastroenterology, vol. 148, no 7, , p. 1452–1465 (ISSN0016-5085, DOI10.1053/j.gastro.2015.02.009, lire en ligne, consulté le )
Chun-Yu Lin, Pei-Hsun Tsai, Chithan C. Kandaswami et Geen-Dong Chang, « Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells », Molecular Cancer, vol. 10, no 1, , p. 87 (ISSN1476-4598, PMID21777419, PMCIDPMC3150327, DOI10.1186/1476-4598-10-87, lire en ligne, consulté le )
(en) Erwin F. Wagner et Ángel R. Nebreda, « Signal integration by JNK and p38 MAPK pathways in cancer development », Nature Reviews Cancer, vol. 9, no 8, , p. 537–549 (ISSN1474-1768, DOI10.1038/nrc2694, lire en ligne, consulté le )
(en) H. Nakano, A. Nakajima, S. Sakon-Komazawa et J.-H. Piao, « Reactive oxygen species mediate crosstalk between NF-κB and JNK », Cell Death & Differentiation, vol. 13, no 5, , p. 730–737 (ISSN1476-5403, DOI10.1038/sj.cdd.4401830, lire en ligne, consulté le )
(en) Hailing Liu, Chau R. Lo et Mark J. Czaja, « NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun: NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun », Hepatology, vol. 35, no 4, , p. 772–778 (DOI10.1053/jhep.2002.32534, lire en ligne, consulté le )
Nadine Gehrke, Nadine Hövelmeyer, Ari Waisman et Beate K. Straub, « Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation », Journal of Hepatology, vol. 68, no 5, , p. 986–995 (ISSN0168-8278, DOI10.1016/j.jhep.2018.01.008, lire en ligne, consulté le )
(en) Murat Digicaylioglu et Stuart A. Lipton, « Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades », Nature, vol. 412, no 6847, , p. 641–647 (ISSN1476-4687, DOI10.1038/35088074, lire en ligne, consulté le )
(en) David E. Levy et J. E. Darnell, « STATs: transcriptional control and biological impact », Nature Reviews Molecular Cell Biology, vol. 3, no 9, , p. 651–662 (ISSN1471-0080, DOI10.1038/nrm909, lire en ligne, consulté le )
Sergei Grivennikov, Eliad Karin, Janos Terzic et Daniel Mucida, « IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer », Cancer Cell, vol. 15, no 2, , p. 103–113 (ISSN1535-6108, PMID19185845, PMCIDPMC2667107, DOI10.1016/j.ccr.2009.01.001, lire en ligne, consulté le )
(en) Maren Feist, Philipp Schwarzfischer, Paul Heinrich et Xueni Sun, « Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression », Nature Communications, vol. 9, no 1, , p. 1514 (ISSN2041-1723, PMID29666362, PMCIDPMC5904148, DOI10.1038/s41467-018-03803-x, lire en ligne, consulté le )
(en) Giorgio Trinchieri, « Interleukin-12 and the regulation of innate resistance and adaptive immunity », Nature Reviews Immunology, vol. 3, no 2, , p. 133–146 (ISSN1474-1741, DOI10.1038/nri1001, lire en ligne, consulté le )
(en) Jennifer F Ma, Brenda J Sanchez, Derek T Hall et Anne‐Marie K Tremblay, « STAT 3 promotes IFN γ/ TNF α‐induced muscle wasting in an NF ‐κB‐dependent and IL ‐6‐independent manner », EMBO Molecular Medicine, vol. 9, no 5, , p. 622–637 (ISSN1757-4676 et 1757-4684, PMID28264935, PMCIDPMC5412921, DOI10.15252/emmm.201607052, lire en ligne, consulté le )
Lukasz Huminiecki, Leon Goldovsky, Shiri Freilich et Aristidis Moustakas, « Emergence, development and diversification of the TGF-βsignalling pathway within the animal kingdom », BMC Evolutionary Biology, vol. 9, no 1, , p. 28 (ISSN1471-2148, PMID19192293, PMCIDPMC2657120, DOI10.1186/1471-2148-9-28, lire en ligne, consulté le )
Sanford D Markowitz et Anita B Roberts, « Tumor suppressor activity of the TGF-β pathway in human cancers », Cytokine & Growth Factor Reviews, vol. 7, no 1, , p. 93–102 (ISSN1359-6101, DOI10.1016/1359-6101(96)00001-9, lire en ligne, consulté le )
(en) Suntaek Hong, Seunghwan Lim, Allen G. Li et Chan Lee, « Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2 », Nature Immunology, vol. 8, no 5, , p. 504–513 (ISSN1529-2916, DOI10.1038/ni1451, lire en ligne, consulté le )
(en) Libing Song, Liping Liu, Zhiqiang Wu et Yun Li, « TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets », The Journal of Clinical Investigation, vol. 122, no 10, , p. 3563–3578 (ISSN0021-9738, PMID23006329, PMCIDPMC3589141, DOI10.1172/JCI62339, lire en ligne, consulté le )
Raffaele Strippoli, Ignacio Benedicto, Miguel Foronda et Maria Luisa Perez-Lozano, « p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition », Journal of Cell Science, vol. 123, no 24, , p. 4321–4331 (ISSN1477-9137 et 0021-9533, DOI10.1242/jcs.071647, lire en ligne, consulté le )
Chao Yin, Zhishuai Ye, Jian Wu et Chenxing Huang, « Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction », eBioMedicine, vol. 74, , p. 103745 (ISSN2352-3964, PMID34911029, PMCIDPMC8669316, DOI10.1016/j.ebiom.2021.103745, lire en ligne, consulté le )
(en) Klaus P. Hoeflich, Juan Luo, Elizabeth A. Rubie et Ming-Sound Tsao, « Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation », Nature, vol. 406, no 6791, , p. 86–90 (ISSN1476-4687, DOI10.1038/35017574, lire en ligne, consulté le )
^ Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M (April 2004). "Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis". Proc. Natl. Acad. Sci. U.S.A. 101 (15): 5634–9. DOI10.1073/pnas.0401060101. PMC 397455. PMID15064395
(en) N. Perkins et T. Gilmore, « Good cop, bad cop: the different faces of NF-kappaB », Cell Death Differ., vol. 13, no 5, , p. 759–772 (PMID16410803, DOI10.1038/sj.cdd.4401838)
Carol Ward, Edwin R. Chilvers, Mark F. Lawson et James G. Pryde, « NF-κB Activation Is a Critical Regulator of Human Granulocyte Apoptosis in Vitro », Journal of Biological Chemistry, vol. 274, no 7, , p. 4309–4318 (ISSN0021-9258, DOI10.1074/jbc.274.7.4309, lire en ligne, consulté le )
(en) Steve Gerondakis, Thomas S. Fulford, Nicole L. Messina et Raelene J. Grumont, « NF-κB control of T cell development », Nature Immunology, vol. 15, no 1, , p. 15–25 (ISSN1529-2916, DOI10.1038/ni.2785, lire en ligne, consulté le )
(en) Min-Jean Yin, Yumi Yamamoto et Richard B. Gaynor, « The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β », Nature, vol. 396, no 6706, , p. 77–80 (ISSN1476-4687, DOI10.1038/23948, lire en ligne, consulté le )
Dan Liao, Li Zhong, Tingmei Duan et Ru-Hua Zhang, « Aspirin Suppresses the Growth and Metastasis of Osteosarcoma through the NF-κB Pathway », Clinical Cancer Research, vol. 21, no 23, , p. 5349–5359 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-15-0198, lire en ligne, consulté le )
Mitali Chattopadhyay, Ravinder Kodela, Niharika Nath et Arpine Barsegian, « Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo », Biochemical Pharmacology, vol. 83, no 6, , p. 723–732 (ISSN0006-2952, DOI10.1016/j.bcp.2011.12.019, lire en ligne, consulté le )
(en) Jianghua Shao, Toshiyoshi Fujiwara, Yoshihiko Kadowaki et Takuya Fukazawa, « Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells », Oncogene, vol. 19, no 6, , p. 726–736 (ISSN1476-5594, DOI10.1038/sj.onc.1203383, lire en ligne, consulté le )
(en) Colin Rae, Susana Langa, Steven J. Tucker et David J. MacEwan, « Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis », Proceedings of the National Academy of Sciences, vol. 104, no 31, , p. 12790–12795 (ISSN0027-8424 et 1091-6490, PMID17646662, PMCIDPMC1937545, DOI10.1073/pnas.0701437104, lire en ligne, consulté le )
(en) Amir Rashidian, Ahad Muhammadnejad, Ahmad-Reza Dehpour et Shahram Ejtemai Mehr, « Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway », Inflammopharmacology, vol. 24, no 2, , p. 109–118 (ISSN1568-5608, DOI10.1007/s10787-016-0263-6, lire en ligne, consulté le )
Jing Su, Fei Liu, Meihui Xia et Ye Xu, « p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells », Oncology Reports, vol. 34, no 1, , p. 235–243 (ISSN1021-335X, DOI10.3892/or.2015.3944, lire en ligne, consulté le )
(en) Rachel Eyre, Denis G. Alférez, Angélica Santiago-Gómez et Kath Spence, « Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling », Nature Communications, vol. 10, no 1, , p. 5016 (ISSN2041-1723, PMID31676788, PMCIDPMC6825219, DOI10.1038/s41467-019-12807-0, lire en ligne, consulté le )
Yana Ge, Ye Xu, Wenjing Sun et Zhaozhao Man, « The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral lichen planus », Gene, vol. 508, no 2, , p. 157–164 (ISSN0378-1119, DOI10.1016/j.gene.2012.07.045, lire en ligne, consulté le )
Jayne A. Keifer, Denis C. Guttridge, Brian P. Ashburner et Albert S. Jr.Baldwin, « Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity », Journal of Biological Chemistry, vol. 276, no 25, , p. 22382–22387 (ISSN0021-9258, DOI10.1074/jbc.m100938200, lire en ligne, consulté le )
Mengting Chen, Hongfu Xie, Zhaohui Chen et San Xu, « Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes », Biomedicine & Pharmacotherapy, vol. 116, , p. 109011 (ISSN0753-3322, DOI10.1016/j.biopha.2019.109011, lire en ligne, consulté le )
Yi-Chu Lin, Chia-Tung Shun, Ming-Shiang Wu et Ching-Chow Chen, « A Novel Anticancer Effect of Thalidomide: Inhibition of Intercellular Adhesion Molecule-1–Mediated Cell Invasion and Metastasis through Suppression of Nuclear Factor-κB », Clinical Cancer Research, vol. 12, no 23, , p. 7165–7173 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-06-1393, lire en ligne, consulté le )
(en) Jason M. Hansen et Craig Harris, « A Novel Hypothesis for Thalidomide-Induced Limb Teratogenesis: Redox Misregulation of the NF-κB Pathway », Antioxidants & Redox Signaling, vol. 6, no 1, , p. 1–14 (ISSN1523-0864 et 1557-7716, DOI10.1089/152308604771978291, lire en ligne, consulté le )
(en) I. Breitkreutz, M. S. Raab, S. Vallet et T. Hideshima, « Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma », Leukemia, vol. 22, no 10, , p. 1925–1932 (ISSN1476-5551, DOI10.1038/leu.2008.174, lire en ligne, consulté le )
Juliane Paul, Maurice Soujon, Antje M. Wengner et Sabine Zitzmann-Kolbe, « Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT », Cancer Cell, vol. 31, no 1, , p. 64–78 (ISSN1535-6108, DOI10.1016/j.ccell.2016.12.003, lire en ligne, consulté le )
Lingjun Chen, Xianyi Lin, Yiming Lei et Xuan Xu, « Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling », Journal of Experimental & Clinical Cancer Research, vol. 41, no 1, , p. 329 (ISSN1756-9966, PMID36411480, PMCIDPMC9677649, DOI10.1186/s13046-022-02531-x, lire en ligne, consulté le )
Mounira Chalabi-Dchar, Stéphanie Cassant-Sourdy, Camille Duluc et Marjorie Fanjul, « Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16 », Gastroenterology, vol. 148, no 7, , p. 1452–1465 (ISSN0016-5085, DOI10.1053/j.gastro.2015.02.009, lire en ligne, consulté le )
Chun-Yu Lin, Pei-Hsun Tsai, Chithan C. Kandaswami et Geen-Dong Chang, « Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells », Molecular Cancer, vol. 10, no 1, , p. 87 (ISSN1476-4598, PMID21777419, PMCIDPMC3150327, DOI10.1186/1476-4598-10-87, lire en ligne, consulté le )
Nadine Gehrke, Nadine Hövelmeyer, Ari Waisman et Beate K. Straub, « Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation », Journal of Hepatology, vol. 68, no 5, , p. 986–995 (ISSN0168-8278, DOI10.1016/j.jhep.2018.01.008, lire en ligne, consulté le )
Sergei Grivennikov, Eliad Karin, Janos Terzic et Daniel Mucida, « IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer », Cancer Cell, vol. 15, no 2, , p. 103–113 (ISSN1535-6108, PMID19185845, PMCIDPMC2667107, DOI10.1016/j.ccr.2009.01.001, lire en ligne, consulté le )
Lukasz Huminiecki, Leon Goldovsky, Shiri Freilich et Aristidis Moustakas, « Emergence, development and diversification of the TGF-βsignalling pathway within the animal kingdom », BMC Evolutionary Biology, vol. 9, no 1, , p. 28 (ISSN1471-2148, PMID19192293, PMCIDPMC2657120, DOI10.1186/1471-2148-9-28, lire en ligne, consulté le )
Raffaele Strippoli, Ignacio Benedicto, Miguel Foronda et Maria Luisa Perez-Lozano, « p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition », Journal of Cell Science, vol. 123, no 24, , p. 4321–4331 (ISSN1477-9137 et 0021-9533, DOI10.1242/jcs.071647, lire en ligne, consulté le )
Chao Yin, Zhishuai Ye, Jian Wu et Chenxing Huang, « Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction », eBioMedicine, vol. 74, , p. 103745 (ISSN2352-3964, PMID34911029, PMCIDPMC8669316, DOI10.1016/j.ebiom.2021.103745, lire en ligne, consulté le )
Carol Ward, Edwin R. Chilvers, Mark F. Lawson et James G. Pryde, « NF-κB Activation Is a Critical Regulator of Human Granulocyte Apoptosis in Vitro », Journal of Biological Chemistry, vol. 274, no 7, , p. 4309–4318 (ISSN0021-9258, DOI10.1074/jbc.274.7.4309, lire en ligne, consulté le )
Dan Liao, Li Zhong, Tingmei Duan et Ru-Hua Zhang, « Aspirin Suppresses the Growth and Metastasis of Osteosarcoma through the NF-κB Pathway », Clinical Cancer Research, vol. 21, no 23, , p. 5349–5359 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-15-0198, lire en ligne, consulté le )
Mitali Chattopadhyay, Ravinder Kodela, Niharika Nath et Arpine Barsegian, « Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo », Biochemical Pharmacology, vol. 83, no 6, , p. 723–732 (ISSN0006-2952, DOI10.1016/j.bcp.2011.12.019, lire en ligne, consulté le )
(en) Amir Rashidian, Ahad Muhammadnejad, Ahmad-Reza Dehpour et Shahram Ejtemai Mehr, « Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway », Inflammopharmacology, vol. 24, no 2, , p. 109–118 (ISSN1568-5608, DOI10.1007/s10787-016-0263-6, lire en ligne, consulté le )
Yana Ge, Ye Xu, Wenjing Sun et Zhaozhao Man, « The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral lichen planus », Gene, vol. 508, no 2, , p. 157–164 (ISSN0378-1119, DOI10.1016/j.gene.2012.07.045, lire en ligne, consulté le )
Jayne A. Keifer, Denis C. Guttridge, Brian P. Ashburner et Albert S. Jr.Baldwin, « Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity », Journal of Biological Chemistry, vol. 276, no 25, , p. 22382–22387 (ISSN0021-9258, DOI10.1074/jbc.m100938200, lire en ligne, consulté le )
Mengting Chen, Hongfu Xie, Zhaohui Chen et San Xu, « Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes », Biomedicine & Pharmacotherapy, vol. 116, , p. 109011 (ISSN0753-3322, DOI10.1016/j.biopha.2019.109011, lire en ligne, consulté le )
Yi-Chu Lin, Chia-Tung Shun, Ming-Shiang Wu et Ching-Chow Chen, « A Novel Anticancer Effect of Thalidomide: Inhibition of Intercellular Adhesion Molecule-1–Mediated Cell Invasion and Metastasis through Suppression of Nuclear Factor-κB », Clinical Cancer Research, vol. 12, no 23, , p. 7165–7173 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-06-1393, lire en ligne, consulté le )
(en) Jennifer F Ma, Brenda J Sanchez, Derek T Hall et Anne‐Marie K Tremblay, « STAT 3 promotes IFN γ/ TNF α‐induced muscle wasting in an NF ‐κB‐dependent and IL ‐6‐independent manner », EMBO Molecular Medicine, vol. 9, no 5, , p. 622–637 (ISSN1757-4676 et 1757-4684, PMID28264935, PMCIDPMC5412921, DOI10.15252/emmm.201607052, lire en ligne, consulté le )
(en) Bart Vanhaesebroeck, Julie Guillermet-Guibert, Mariona Graupera et Benoit Bilanges, « The emerging mechanisms of isoform-specific PI3K signalling », Nature Reviews Molecular Cell Biology, vol. 11, no 5, , p. 329–341 (ISSN1471-0080, DOI10.1038/nrm2882, lire en ligne, consulté le )
(en) Lauren M. Thorpe, Haluk Yuzugullu et Jean J. Zhao, « PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting », Nature Reviews Cancer, vol. 15, no 1, , p. 7–24 (ISSN1474-1768, PMID25533673, PMCIDPMC4384662, DOI10.1038/nrc3860, lire en ligne, consulté le )
Juliane Paul, Maurice Soujon, Antje M. Wengner et Sabine Zitzmann-Kolbe, « Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT », Cancer Cell, vol. 31, no 1, , p. 64–78 (ISSN1535-6108, DOI10.1016/j.ccell.2016.12.003, lire en ligne, consulté le )
(en) Zitong Wang, Ziyu Gao, Yinghong Zheng et Jiayuan Kou, « Melatonin inhibits atherosclerosis progression via galectin‐3 downregulation to enhance autophagy and inhibit inflammation », Journal of Pineal Research, vol. 74, no 3, (ISSN0742-3098 et 1600-079X, DOI10.1111/jpi.12855, lire en ligne, consulté le )
Lingjun Chen, Xianyi Lin, Yiming Lei et Xuan Xu, « Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling », Journal of Experimental & Clinical Cancer Research, vol. 41, no 1, , p. 329 (ISSN1756-9966, PMID36411480, PMCIDPMC9677649, DOI10.1186/s13046-022-02531-x, lire en ligne, consulté le )
Mounira Chalabi-Dchar, Stéphanie Cassant-Sourdy, Camille Duluc et Marjorie Fanjul, « Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16 », Gastroenterology, vol. 148, no 7, , p. 1452–1465 (ISSN0016-5085, DOI10.1053/j.gastro.2015.02.009, lire en ligne, consulté le )
Chun-Yu Lin, Pei-Hsun Tsai, Chithan C. Kandaswami et Geen-Dong Chang, « Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells », Molecular Cancer, vol. 10, no 1, , p. 87 (ISSN1476-4598, PMID21777419, PMCIDPMC3150327, DOI10.1186/1476-4598-10-87, lire en ligne, consulté le )
(en) Erwin F. Wagner et Ángel R. Nebreda, « Signal integration by JNK and p38 MAPK pathways in cancer development », Nature Reviews Cancer, vol. 9, no 8, , p. 537–549 (ISSN1474-1768, DOI10.1038/nrc2694, lire en ligne, consulté le )
(en) H. Nakano, A. Nakajima, S. Sakon-Komazawa et J.-H. Piao, « Reactive oxygen species mediate crosstalk between NF-κB and JNK », Cell Death & Differentiation, vol. 13, no 5, , p. 730–737 (ISSN1476-5403, DOI10.1038/sj.cdd.4401830, lire en ligne, consulté le )
Nadine Gehrke, Nadine Hövelmeyer, Ari Waisman et Beate K. Straub, « Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation », Journal of Hepatology, vol. 68, no 5, , p. 986–995 (ISSN0168-8278, DOI10.1016/j.jhep.2018.01.008, lire en ligne, consulté le )
(en) Murat Digicaylioglu et Stuart A. Lipton, « Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades », Nature, vol. 412, no 6847, , p. 641–647 (ISSN1476-4687, DOI10.1038/35088074, lire en ligne, consulté le )
(en) David E. Levy et J. E. Darnell, « STATs: transcriptional control and biological impact », Nature Reviews Molecular Cell Biology, vol. 3, no 9, , p. 651–662 (ISSN1471-0080, DOI10.1038/nrm909, lire en ligne, consulté le )
Sergei Grivennikov, Eliad Karin, Janos Terzic et Daniel Mucida, « IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer », Cancer Cell, vol. 15, no 2, , p. 103–113 (ISSN1535-6108, PMID19185845, PMCIDPMC2667107, DOI10.1016/j.ccr.2009.01.001, lire en ligne, consulté le )
(en) Maren Feist, Philipp Schwarzfischer, Paul Heinrich et Xueni Sun, « Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression », Nature Communications, vol. 9, no 1, , p. 1514 (ISSN2041-1723, PMID29666362, PMCIDPMC5904148, DOI10.1038/s41467-018-03803-x, lire en ligne, consulté le )
(en) Giorgio Trinchieri, « Interleukin-12 and the regulation of innate resistance and adaptive immunity », Nature Reviews Immunology, vol. 3, no 2, , p. 133–146 (ISSN1474-1741, DOI10.1038/nri1001, lire en ligne, consulté le )
(en) Jennifer F Ma, Brenda J Sanchez, Derek T Hall et Anne‐Marie K Tremblay, « STAT 3 promotes IFN γ/ TNF α‐induced muscle wasting in an NF ‐κB‐dependent and IL ‐6‐independent manner », EMBO Molecular Medicine, vol. 9, no 5, , p. 622–637 (ISSN1757-4676 et 1757-4684, PMID28264935, PMCIDPMC5412921, DOI10.15252/emmm.201607052, lire en ligne, consulté le )
Lukasz Huminiecki, Leon Goldovsky, Shiri Freilich et Aristidis Moustakas, « Emergence, development and diversification of the TGF-βsignalling pathway within the animal kingdom », BMC Evolutionary Biology, vol. 9, no 1, , p. 28 (ISSN1471-2148, PMID19192293, PMCIDPMC2657120, DOI10.1186/1471-2148-9-28, lire en ligne, consulté le )
Sanford D Markowitz et Anita B Roberts, « Tumor suppressor activity of the TGF-β pathway in human cancers », Cytokine & Growth Factor Reviews, vol. 7, no 1, , p. 93–102 (ISSN1359-6101, DOI10.1016/1359-6101(96)00001-9, lire en ligne, consulté le )
(en) Suntaek Hong, Seunghwan Lim, Allen G. Li et Chan Lee, « Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2 », Nature Immunology, vol. 8, no 5, , p. 504–513 (ISSN1529-2916, DOI10.1038/ni1451, lire en ligne, consulté le )
(en) Libing Song, Liping Liu, Zhiqiang Wu et Yun Li, « TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets », The Journal of Clinical Investigation, vol. 122, no 10, , p. 3563–3578 (ISSN0021-9738, PMID23006329, PMCIDPMC3589141, DOI10.1172/JCI62339, lire en ligne, consulté le )
Raffaele Strippoli, Ignacio Benedicto, Miguel Foronda et Maria Luisa Perez-Lozano, « p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition », Journal of Cell Science, vol. 123, no 24, , p. 4321–4331 (ISSN1477-9137 et 0021-9533, DOI10.1242/jcs.071647, lire en ligne, consulté le )
Chao Yin, Zhishuai Ye, Jian Wu et Chenxing Huang, « Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction », eBioMedicine, vol. 74, , p. 103745 (ISSN2352-3964, PMID34911029, PMCIDPMC8669316, DOI10.1016/j.ebiom.2021.103745, lire en ligne, consulté le )
(en) Klaus P. Hoeflich, Juan Luo, Elizabeth A. Rubie et Ming-Sound Tsao, « Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation », Nature, vol. 406, no 6791, , p. 86–90 (ISSN1476-4687, DOI10.1038/35017574, lire en ligne, consulté le )
Carol Ward, Edwin R. Chilvers, Mark F. Lawson et James G. Pryde, « NF-κB Activation Is a Critical Regulator of Human Granulocyte Apoptosis in Vitro », Journal of Biological Chemistry, vol. 274, no 7, , p. 4309–4318 (ISSN0021-9258, DOI10.1074/jbc.274.7.4309, lire en ligne, consulté le )
(en) Steve Gerondakis, Thomas S. Fulford, Nicole L. Messina et Raelene J. Grumont, « NF-κB control of T cell development », Nature Immunology, vol. 15, no 1, , p. 15–25 (ISSN1529-2916, DOI10.1038/ni.2785, lire en ligne, consulté le )
(en) Min-Jean Yin, Yumi Yamamoto et Richard B. Gaynor, « The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β », Nature, vol. 396, no 6706, , p. 77–80 (ISSN1476-4687, DOI10.1038/23948, lire en ligne, consulté le )
Dan Liao, Li Zhong, Tingmei Duan et Ru-Hua Zhang, « Aspirin Suppresses the Growth and Metastasis of Osteosarcoma through the NF-κB Pathway », Clinical Cancer Research, vol. 21, no 23, , p. 5349–5359 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-15-0198, lire en ligne, consulté le )
Mitali Chattopadhyay, Ravinder Kodela, Niharika Nath et Arpine Barsegian, « Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo », Biochemical Pharmacology, vol. 83, no 6, , p. 723–732 (ISSN0006-2952, DOI10.1016/j.bcp.2011.12.019, lire en ligne, consulté le )
(en) Jianghua Shao, Toshiyoshi Fujiwara, Yoshihiko Kadowaki et Takuya Fukazawa, « Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells », Oncogene, vol. 19, no 6, , p. 726–736 (ISSN1476-5594, DOI10.1038/sj.onc.1203383, lire en ligne, consulté le )
(en) Colin Rae, Susana Langa, Steven J. Tucker et David J. MacEwan, « Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis », Proceedings of the National Academy of Sciences, vol. 104, no 31, , p. 12790–12795 (ISSN0027-8424 et 1091-6490, PMID17646662, PMCIDPMC1937545, DOI10.1073/pnas.0701437104, lire en ligne, consulté le )
(en) Amir Rashidian, Ahad Muhammadnejad, Ahmad-Reza Dehpour et Shahram Ejtemai Mehr, « Atorvastatin attenuates TNBS-induced rat colitis: the involvement of the TLR4/NF-kB signaling pathway », Inflammopharmacology, vol. 24, no 2, , p. 109–118 (ISSN1568-5608, DOI10.1007/s10787-016-0263-6, lire en ligne, consulté le )
Jing Su, Fei Liu, Meihui Xia et Ye Xu, « p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells », Oncology Reports, vol. 34, no 1, , p. 235–243 (ISSN1021-335X, DOI10.3892/or.2015.3944, lire en ligne, consulté le )
(en) Rachel Eyre, Denis G. Alférez, Angélica Santiago-Gómez et Kath Spence, « Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling », Nature Communications, vol. 10, no 1, , p. 5016 (ISSN2041-1723, PMID31676788, PMCIDPMC6825219, DOI10.1038/s41467-019-12807-0, lire en ligne, consulté le )
Yana Ge, Ye Xu, Wenjing Sun et Zhaozhao Man, « The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral lichen planus », Gene, vol. 508, no 2, , p. 157–164 (ISSN0378-1119, DOI10.1016/j.gene.2012.07.045, lire en ligne, consulté le )
Jayne A. Keifer, Denis C. Guttridge, Brian P. Ashburner et Albert S. Jr.Baldwin, « Inhibition of NF-κB Activity by Thalidomide through Suppression of IκB Kinase Activity », Journal of Biological Chemistry, vol. 276, no 25, , p. 22382–22387 (ISSN0021-9258, DOI10.1074/jbc.m100938200, lire en ligne, consulté le )
Mengting Chen, Hongfu Xie, Zhaohui Chen et San Xu, « Thalidomide ameliorates rosacea-like skin inflammation and suppresses NF-κB activation in keratinocytes », Biomedicine & Pharmacotherapy, vol. 116, , p. 109011 (ISSN0753-3322, DOI10.1016/j.biopha.2019.109011, lire en ligne, consulté le )
Yi-Chu Lin, Chia-Tung Shun, Ming-Shiang Wu et Ching-Chow Chen, « A Novel Anticancer Effect of Thalidomide: Inhibition of Intercellular Adhesion Molecule-1–Mediated Cell Invasion and Metastasis through Suppression of Nuclear Factor-κB », Clinical Cancer Research, vol. 12, no 23, , p. 7165–7173 (ISSN1078-0432 et 1557-3265, DOI10.1158/1078-0432.ccr-06-1393, lire en ligne, consulté le )
(en) Jason M. Hansen et Craig Harris, « A Novel Hypothesis for Thalidomide-Induced Limb Teratogenesis: Redox Misregulation of the NF-κB Pathway », Antioxidants & Redox Signaling, vol. 6, no 1, , p. 1–14 (ISSN1523-0864 et 1557-7716, DOI10.1089/152308604771978291, lire en ligne, consulté le )
(en) I. Breitkreutz, M. S. Raab, S. Vallet et T. Hideshima, « Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma », Leukemia, vol. 22, no 10, , p. 1925–1932 (ISSN1476-5551, DOI10.1038/leu.2008.174, lire en ligne, consulté le )
(en) Libing Song, Liping Liu, Zhiqiang Wu et Yun Li, « TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets », The Journal of Clinical Investigation, vol. 122, no 10, , p. 3563–3578 (ISSN0021-9738, PMID23006329, PMCIDPMC3589141, DOI10.1172/JCI62339, lire en ligne, consulté le )
(en) Jason M. Hansen et Craig Harris, « A Novel Hypothesis for Thalidomide-Induced Limb Teratogenesis: Redox Misregulation of the NF-κB Pathway », Antioxidants & Redox Signaling, vol. 6, no 1, , p. 1–14 (ISSN1523-0864 et 1557-7716, DOI10.1089/152308604771978291, lire en ligne, consulté le )
(en) Bart Vanhaesebroeck, Julie Guillermet-Guibert, Mariona Graupera et Benoit Bilanges, « The emerging mechanisms of isoform-specific PI3K signalling », Nature Reviews Molecular Cell Biology, vol. 11, no 5, , p. 329–341 (ISSN1471-0080, DOI10.1038/nrm2882, lire en ligne, consulté le )
(en) Lauren M. Thorpe, Haluk Yuzugullu et Jean J. Zhao, « PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting », Nature Reviews Cancer, vol. 15, no 1, , p. 7–24 (ISSN1474-1768, PMID25533673, PMCIDPMC4384662, DOI10.1038/nrc3860, lire en ligne, consulté le )
(en) Erwin F. Wagner et Ángel R. Nebreda, « Signal integration by JNK and p38 MAPK pathways in cancer development », Nature Reviews Cancer, vol. 9, no 8, , p. 537–549 (ISSN1474-1768, DOI10.1038/nrc2694, lire en ligne, consulté le )
(en) H. Nakano, A. Nakajima, S. Sakon-Komazawa et J.-H. Piao, « Reactive oxygen species mediate crosstalk between NF-κB and JNK », Cell Death & Differentiation, vol. 13, no 5, , p. 730–737 (ISSN1476-5403, DOI10.1038/sj.cdd.4401830, lire en ligne, consulté le )
(en) Murat Digicaylioglu et Stuart A. Lipton, « Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades », Nature, vol. 412, no 6847, , p. 641–647 (ISSN1476-4687, DOI10.1038/35088074, lire en ligne, consulté le )
(en) David E. Levy et J. E. Darnell, « STATs: transcriptional control and biological impact », Nature Reviews Molecular Cell Biology, vol. 3, no 9, , p. 651–662 (ISSN1471-0080, DOI10.1038/nrm909, lire en ligne, consulté le )
(en) Maren Feist, Philipp Schwarzfischer, Paul Heinrich et Xueni Sun, « Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression », Nature Communications, vol. 9, no 1, , p. 1514 (ISSN2041-1723, PMID29666362, PMCIDPMC5904148, DOI10.1038/s41467-018-03803-x, lire en ligne, consulté le )
(en) Giorgio Trinchieri, « Interleukin-12 and the regulation of innate resistance and adaptive immunity », Nature Reviews Immunology, vol. 3, no 2, , p. 133–146 (ISSN1474-1741, DOI10.1038/nri1001, lire en ligne, consulté le )
(en) Suntaek Hong, Seunghwan Lim, Allen G. Li et Chan Lee, « Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2 », Nature Immunology, vol. 8, no 5, , p. 504–513 (ISSN1529-2916, DOI10.1038/ni1451, lire en ligne, consulté le )
(en) Klaus P. Hoeflich, Juan Luo, Elizabeth A. Rubie et Ming-Sound Tsao, « Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation », Nature, vol. 406, no 6791, , p. 86–90 (ISSN1476-4687, DOI10.1038/35017574, lire en ligne, consulté le )
(en) Steve Gerondakis, Thomas S. Fulford, Nicole L. Messina et Raelene J. Grumont, « NF-κB control of T cell development », Nature Immunology, vol. 15, no 1, , p. 15–25 (ISSN1529-2916, DOI10.1038/ni.2785, lire en ligne, consulté le )
(en) Min-Jean Yin, Yumi Yamamoto et Richard B. Gaynor, « The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β », Nature, vol. 396, no 6706, , p. 77–80 (ISSN1476-4687, DOI10.1038/23948, lire en ligne, consulté le )
(en) Jianghua Shao, Toshiyoshi Fujiwara, Yoshihiko Kadowaki et Takuya Fukazawa, « Overexpression of the wild-type p53 gene inhibits NF-κB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells », Oncogene, vol. 19, no 6, , p. 726–736 (ISSN1476-5594, DOI10.1038/sj.onc.1203383, lire en ligne, consulté le )
(en) Rachel Eyre, Denis G. Alférez, Angélica Santiago-Gómez et Kath Spence, « Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling », Nature Communications, vol. 10, no 1, , p. 5016 (ISSN2041-1723, PMID31676788, PMCIDPMC6825219, DOI10.1038/s41467-019-12807-0, lire en ligne, consulté le )
(en) I. Breitkreutz, M. S. Raab, S. Vallet et T. Hideshima, « Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma », Leukemia, vol. 22, no 10, , p. 1925–1932 (ISSN1476-5551, DOI10.1038/leu.2008.174, lire en ligne, consulté le )
(en) Lauren M. Thorpe, Haluk Yuzugullu et Jean J. Zhao, « PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting », Nature Reviews Cancer, vol. 15, no 1, , p. 7–24 (ISSN1474-1768, PMID25533673, PMCIDPMC4384662, DOI10.1038/nrc3860, lire en ligne, consulté le )
Lingjun Chen, Xianyi Lin, Yiming Lei et Xuan Xu, « Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling », Journal of Experimental & Clinical Cancer Research, vol. 41, no 1, , p. 329 (ISSN1756-9966, PMID36411480, PMCIDPMC9677649, DOI10.1186/s13046-022-02531-x, lire en ligne, consulté le )
Chun-Yu Lin, Pei-Hsun Tsai, Chithan C. Kandaswami et Geen-Dong Chang, « Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells », Molecular Cancer, vol. 10, no 1, , p. 87 (ISSN1476-4598, PMID21777419, PMCIDPMC3150327, DOI10.1186/1476-4598-10-87, lire en ligne, consulté le )
Sergei Grivennikov, Eliad Karin, Janos Terzic et Daniel Mucida, « IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer », Cancer Cell, vol. 15, no 2, , p. 103–113 (ISSN1535-6108, PMID19185845, PMCIDPMC2667107, DOI10.1016/j.ccr.2009.01.001, lire en ligne, consulté le )
(en) Maren Feist, Philipp Schwarzfischer, Paul Heinrich et Xueni Sun, « Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression », Nature Communications, vol. 9, no 1, , p. 1514 (ISSN2041-1723, PMID29666362, PMCIDPMC5904148, DOI10.1038/s41467-018-03803-x, lire en ligne, consulté le )
(en) Jennifer F Ma, Brenda J Sanchez, Derek T Hall et Anne‐Marie K Tremblay, « STAT 3 promotes IFN γ/ TNF α‐induced muscle wasting in an NF ‐κB‐dependent and IL ‐6‐independent manner », EMBO Molecular Medicine, vol. 9, no 5, , p. 622–637 (ISSN1757-4676 et 1757-4684, PMID28264935, PMCIDPMC5412921, DOI10.15252/emmm.201607052, lire en ligne, consulté le )
Lukasz Huminiecki, Leon Goldovsky, Shiri Freilich et Aristidis Moustakas, « Emergence, development and diversification of the TGF-βsignalling pathway within the animal kingdom », BMC Evolutionary Biology, vol. 9, no 1, , p. 28 (ISSN1471-2148, PMID19192293, PMCIDPMC2657120, DOI10.1186/1471-2148-9-28, lire en ligne, consulté le )
(en) Libing Song, Liping Liu, Zhiqiang Wu et Yun Li, « TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets », The Journal of Clinical Investigation, vol. 122, no 10, , p. 3563–3578 (ISSN0021-9738, PMID23006329, PMCIDPMC3589141, DOI10.1172/JCI62339, lire en ligne, consulté le )
Chao Yin, Zhishuai Ye, Jian Wu et Chenxing Huang, « Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction », eBioMedicine, vol. 74, , p. 103745 (ISSN2352-3964, PMID34911029, PMCIDPMC8669316, DOI10.1016/j.ebiom.2021.103745, lire en ligne, consulté le )
^ Monaco C, Andreakos E, Kiriakidis S, Mauri C, Bicknell C, Foxwell B, Cheshire N, Paleolog E, Feldmann M (April 2004). "Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis". Proc. Natl. Acad. Sci. U.S.A. 101 (15): 5634–9. DOI10.1073/pnas.0401060101. PMC 397455. PMID15064395
(en) N. Perkins et T. Gilmore, « Good cop, bad cop: the different faces of NF-kappaB », Cell Death Differ., vol. 13, no 5, , p. 759–772 (PMID16410803, DOI10.1038/sj.cdd.4401838)
(en) Colin Rae, Susana Langa, Steven J. Tucker et David J. MacEwan, « Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis », Proceedings of the National Academy of Sciences, vol. 104, no 31, , p. 12790–12795 (ISSN0027-8424 et 1091-6490, PMID17646662, PMCIDPMC1937545, DOI10.1073/pnas.0701437104, lire en ligne, consulté le )
(en) Rachel Eyre, Denis G. Alférez, Angélica Santiago-Gómez et Kath Spence, « Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling », Nature Communications, vol. 10, no 1, , p. 5016 (ISSN2041-1723, PMID31676788, PMCIDPMC6825219, DOI10.1038/s41467-019-12807-0, lire en ligne, consulté le )
(en) Colin Rae, Susana Langa, Steven J. Tucker et David J. MacEwan, « Elevated NF-κB responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis », Proceedings of the National Academy of Sciences, vol. 104, no 31, , p. 12790–12795 (ISSN0027-8424 et 1091-6490, PMID17646662, PMCIDPMC1937545, DOI10.1073/pnas.0701437104, lire en ligne, consulté le )
Sanford D Markowitz et Anita B Roberts, « Tumor suppressor activity of the TGF-β pathway in human cancers », Cytokine & Growth Factor Reviews, vol. 7, no 1, , p. 93–102 (ISSN1359-6101, DOI10.1016/1359-6101(96)00001-9, lire en ligne, consulté le )
Jing Su, Fei Liu, Meihui Xia et Ye Xu, « p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells », Oncology Reports, vol. 34, no 1, , p. 235–243 (ISSN1021-335X, DOI10.3892/or.2015.3944, lire en ligne, consulté le )
(en) Zitong Wang, Ziyu Gao, Yinghong Zheng et Jiayuan Kou, « Melatonin inhibits atherosclerosis progression via galectin‐3 downregulation to enhance autophagy and inhibit inflammation », Journal of Pineal Research, vol. 74, no 3, (ISSN0742-3098 et 1600-079X, DOI10.1111/jpi.12855, lire en ligne, consulté le )
doi.wiley.com
(en) Hailing Liu, Chau R. Lo et Mark J. Czaja, « NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun: NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun », Hepatology, vol. 35, no 4, , p. 772–778 (DOI10.1053/jhep.2002.32534, lire en ligne, consulté le )