Il écrit ainsi à Bernard Frénicle de Bessy : « Mais voici ce que j'admire le plus : c'est que je suis quasi persuadé que tous les nombres progressifs augmentés de l'unité, desquels les exposants sont des nombres de la progression double, sont nombres premiers, comme 3, 5, 17, 257, 65537, 4 294 967 297 et le suivant de 20 lettres 18 446 744 073 709 551 617 ; etc. Je n'en ai pas la démonstration exacte, mais j'ai exclu si grande quantité de diviseurs par démonstrations infaillibles, et j'ai de si grandes lumières, qui établissent ma pensée, que j'aurois peine à me dédire. », Lettre XLIII, du ? août 1640, dans Œuvres de Fermat, t. 2, Paris, Gauthier-Villars, (lire en ligne), p. 206.
(la) Leonh. Euler, « Variae observationes circa series infinitas », Commentarii academiae scientiarum Petropolitanae, vol. 9, 1744, p. 160-188 ou Opera Omnia, Series 1, vol. 14, p. 217-244. Téléchargeable à [2]. L'identité y est le théorème 7, p. 172 et l'infinité des nombres premiers y est implicitement rappelée et analysée dans les corollaires qui suivent.
Kawai Lui remarque aussi dans sa thèse (en) qu'en dépit de compétences techniques bien supérieures, il ne semble pas que les nombres premiers (ni d'ailleurs les coniques) aient été remarqués en Chine avant le XVIIe siècle, lorsque les missionnaires occidentaux les firent connaître.
B. Schott, « Les nombres brésiliens », Quadrature, vol. 76, , disponible dans les liens de la suite A125134 de l'OEIS.
pacific.edu
scholarlycommons.pacific.edu
(la) L. Euler, « Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus », Commentarii academiae scientiarum Petropolitanae, vol. 6, , p. 102-103 (lire en ligne).
(en) primes.utm.edu Conditional Calculation of pi(10^24).
uwaterloo.ca
cs.uwaterloo.ca
C. K. Caldwell, A. Reddick, Y. Xiong, W. Keller. The history of the primality of one : a selection of sources. Journal of Integer sequences, Vol. 15, 2012, Article 12.9.8. [1]