Orbitale moléculaire localisée (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Orbitale moléculaire localisée" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
4th place
12th place
18th place
118th place
6th place
63rd place
8,222nd place
low place
69th place
232nd place

archive.org

arxiv.org

au.dk

pure.au.dk

doi.org

dx.doi.org

  • Hirst et Linington, « Localized orbitals for the oxygen and nitric oxide molecules », Theoretica Chimica Acta, vol. 16, no 1,‎ , p. 55–62 (DOI 10.1007/BF01045967)
  • Duke, « Linnett's double quartet theory and localised orbitals », Journal of Molecular Structure: THEOCHEM, vol. 152, nos 3–4,‎ , p. 319–330 (DOI 10.1016/0166-1280(87)80072-6)
  • Edmiston et Ruedenberg, « Localized Atomic and Molecular Orbitals », Reviews of Modern Physics, vol. 35, no 3,‎ , p. 457–465 (DOI 10.1103/RevModPhys.35.457, Bibcode 1963RvMP...35..457E)
  • Lehtola et Jónsson, « Unitary Optimization of Localized Molecular Orbitals », Journal of Chemical Theory and Computation, vol. 9, no 12,‎ , p. 5365–5372 (PMID 26592274, DOI 10.1021/ct400793q)
  • Leonard et Luken, « Quadratically Convergent Calculation of Localized Molecular Orbitals », Theoretica Chimica Acta, vol. 62, no 2,‎ , p. 107–132 (DOI 10.1007/BF00581477)
  • Høyvik, Jansik et Jørgensen, « Trust Region Minimization of Orbital Localization Functions », Journal of Chemical Theory and Computation, vol. 8, no 9,‎ , p. 3137–3146 (PMID 26605725, DOI 10.1021/ct300473g)
  • Boys, « Construction of Molecular orbitals to be minimally variant for changes from one molecule to another », Reviews of Modern Physics, vol. 32, no 2,‎ , p. 296–299 (DOI 10.1103/RevModPhys.32.300, Bibcode 1960RvMP...32..296B)
  • Kleier et J. Chem. Phys. 61, 3905 (1974), « Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods », The Journal of Chemical Physics, Journal of Chemical Physics, vol. 61, no 10,‎ , p. 3905–3919 (DOI 10.1063/1.1681683, Bibcode 1974JChPh..61.3905K)
  • Høyvik, Jansik et Jørgensen, « Orbital localization using fourth central moment minimization », Journal of Chemical Physics, vol. 137, no 22,‎ , p. 244114 (PMID 23248994, DOI 10.1063/1.4769866, Bibcode 2012JChPh.137v4114H, lire en ligne)
  • Pipek et Mezey, « A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions », The Journal of Chemical Physics, vol. 90, no 9,‎ , p. 4916 (DOI 10.1063/1.456588, Bibcode 1989JChPh..90.4916P)
  • Lehtola et Jónsson, « Pipek–Mezey orbital localization using various partial charge estimates », Journal of Chemical Theory and Computation, vol. 10, no 2,‎ , p. 642–649 (PMID 26580041, DOI 10.1021/ct401016x)
  • Knizia, « Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts », Journal of Chemical Theory and Computation, vol. 9, no 11,‎ , p. 4834–4843 (PMID 26583402, DOI 10.1021/ct400687b, Bibcode 2013arXiv1306.6884K, arXiv 1306.6884)
  • Cioslowski, « Partitioning of the orbital overlap matrix and the localization criteria », Journal of Mathematical Chemistry, vol. 8, no 1,‎ , p. 169–178 (DOI 10.1007/BF01166933)
  • Alcoba, Lain, Torre et Bochicchio, « An orbital localization criterion based on the theory of "fuzzy" atoms », Journal of Computational Chemistry, vol. 27, no 5,‎ , p. 596–608 (PMID 16470667, DOI 10.1002/jcc.20373)
  • Høyvik, Jansik et Jørgensen, « Pipek–Mezey localization of occupied and virtual orbitals », Journal of Computational Chemistry, vol. 34, no 17,‎ , p. 1456–1462 (PMID 23553349, DOI 10.1002/jcc.23281)
  • Heßelmann, « Local Molecular Orbitals from a Projection onto Localized Centers », Journal of Chemical Theory and Computation, vol. 12, no 6,‎ , p. 2720–2741 (PMID 27164445, DOI 10.1021/acs.jctc.6b00321)

harvard.edu

ui.adsabs.harvard.edu

nih.gov

ncbi.nlm.nih.gov

  • Lehtola et Jónsson, « Unitary Optimization of Localized Molecular Orbitals », Journal of Chemical Theory and Computation, vol. 9, no 12,‎ , p. 5365–5372 (PMID 26592274, DOI 10.1021/ct400793q)
  • Høyvik, Jansik et Jørgensen, « Trust Region Minimization of Orbital Localization Functions », Journal of Chemical Theory and Computation, vol. 8, no 9,‎ , p. 3137–3146 (PMID 26605725, DOI 10.1021/ct300473g)
  • Høyvik, Jansik et Jørgensen, « Orbital localization using fourth central moment minimization », Journal of Chemical Physics, vol. 137, no 22,‎ , p. 244114 (PMID 23248994, DOI 10.1063/1.4769866, Bibcode 2012JChPh.137v4114H, lire en ligne)
  • Lehtola et Jónsson, « Pipek–Mezey orbital localization using various partial charge estimates », Journal of Chemical Theory and Computation, vol. 10, no 2,‎ , p. 642–649 (PMID 26580041, DOI 10.1021/ct401016x)
  • Knizia, « Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts », Journal of Chemical Theory and Computation, vol. 9, no 11,‎ , p. 4834–4843 (PMID 26583402, DOI 10.1021/ct400687b, Bibcode 2013arXiv1306.6884K, arXiv 1306.6884)
  • Alcoba, Lain, Torre et Bochicchio, « An orbital localization criterion based on the theory of "fuzzy" atoms », Journal of Computational Chemistry, vol. 27, no 5,‎ , p. 596–608 (PMID 16470667, DOI 10.1002/jcc.20373)
  • Høyvik, Jansik et Jørgensen, « Pipek–Mezey localization of occupied and virtual orbitals », Journal of Computational Chemistry, vol. 34, no 17,‎ , p. 1456–1462 (PMID 23553349, DOI 10.1002/jcc.23281)
  • Heßelmann, « Local Molecular Orbitals from a Projection onto Localized Centers », Journal of Chemical Theory and Computation, vol. 12, no 6,‎ , p. 2720–2741 (PMID 27164445, DOI 10.1021/acs.jctc.6b00321)