(en) Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M, « Direct-coupling analysis of residue coevolution captures native contacts across many protein families », Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no 49, , E1293-301 (PMID22106262, PMCID3241805, DOI10.1073/pnas.1111471108, Bibcode2011PNAS..108E1293M, arXiv1110.5223)
(en) W. Pirovano et J. Heringa, Data Mining Techniques for the Life Sciences, vol. 609, coll. « Methods in Molecular Biology », , 327-48 p. (PMID20221928, DOI10.1007 / 978-1-60327-241-4_19), « Protein secondary structure prediction ».
(en) Márcio Dorn, Mariel Barbachan e Silva, Luciana S. Buriol et Luis C. Lamb, « Three-dimensional protein structure prediction: Methods and computational strategies », Computational Biology and Chemistry, vol. 53, , p. 251–276 (ISSN1476-9271, PMID25462334, DOI10.1016/j.compbiolchem.2014.10.001, lire en ligne)
(en) Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Millisecond-scale molecular dynamics simulations on Anton, , 1 p. (ISBN9781605587448, DOI10.1145/1654059.1654126)
(en) Pierce LC, Salomon-Ferrer R, de Oliveira CA, McCammon JA, Walker RC, « Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics », Journal of Chemical Theory and Computation, vol. 8, no 9, , p. 2997–3002 (PMID22984356, PMCID3438784, DOI10.1021/ct300284c)
(en) Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A, « Coarse-Grained Protein Models and Their Applications », Chemical Reviews, vol. 116, no 14, , p. 7898–936 (PMID27333362, DOI10.1021/acs.chemrev.6b00163)
(en) Göbel U, Sander C, Schneider R, Valencia A, « Correlated mutations and residue contacts in proteins », Proteins, vol. 18, no 4, , p. 309–17 (PMID8208723, DOI10.1002/prot.340180402, S2CID14978727)
(en) Taylor WR, Hatrick K, « Compensating changes in protein multiple sequence alignments », Protein Engineering, vol. 7, no 3, , p. 341–8 (PMID8177883, DOI10.1093/protein/7.3.341)
(en) Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M, « Direct-coupling analysis of residue coevolution captures native contacts across many protein families », Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no 49, , E1293-301 (PMID22106262, PMCID3241805, DOI10.1073/pnas.1111471108, Bibcode2011PNAS..108E1293M, arXiv1110.5223)
(en) Nugent T, Jones DT, « Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis », Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no 24, , E1540-7 (PMID22645369, PMCID3386101, DOI10.1073/pnas.1120036109, Bibcode2012PNAS..109E1540N)
(en) Zhang Y, Skolnick J, « The protein structure prediction problem could be solved using the current PDB library », Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no 4, , p. 1029–34 (PMID15653774, PMCID545829, DOI10.1073/pnas.0407152101, Bibcode2005PNAS..102.1029Z)
(en) Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M, « Direct-coupling analysis of residue coevolution captures native contacts across many protein families », Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no 49, , E1293-301 (PMID22106262, PMCID3241805, DOI10.1073/pnas.1111471108, Bibcode2011PNAS..108E1293M, arXiv1110.5223)
(en) Nugent T, Jones DT, « Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis », Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no 24, , E1540-7 (PMID22645369, PMCID3386101, DOI10.1073/pnas.1120036109, Bibcode2012PNAS..109E1540N)
(en) Zhang Y, Skolnick J, « The protein structure prediction problem could be solved using the current PDB library », Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no 4, , p. 1029–34 (PMID15653774, PMCID545829, DOI10.1073/pnas.0407152101, Bibcode2005PNAS..102.1029Z)
(en) Márcio Dorn, Mariel Barbachan e Silva, Luciana S. Buriol et Luis C. Lamb, « Three-dimensional protein structure prediction: Methods and computational strategies », Computational Biology and Chemistry, vol. 53, , p. 251–276 (ISSN1476-9271, PMID25462334, DOI10.1016/j.compbiolchem.2014.10.001, lire en ligne)
(en) W. Pirovano et J. Heringa, Data Mining Techniques for the Life Sciences, vol. 609, coll. « Methods in Molecular Biology », , 327-48 p. (PMID20221928, DOI10.1007 / 978-1-60327-241-4_19), « Protein secondary structure prediction ».
(en) Márcio Dorn, Mariel Barbachan e Silva, Luciana S. Buriol et Luis C. Lamb, « Three-dimensional protein structure prediction: Methods and computational strategies », Computational Biology and Chemistry, vol. 53, , p. 251–276 (ISSN1476-9271, PMID25462334, DOI10.1016/j.compbiolchem.2014.10.001, lire en ligne)
(en) Pierce LC, Salomon-Ferrer R, de Oliveira CA, McCammon JA, Walker RC, « Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics », Journal of Chemical Theory and Computation, vol. 8, no 9, , p. 2997–3002 (PMID22984356, PMCID3438784, DOI10.1021/ct300284c)
(en) Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A, « Coarse-Grained Protein Models and Their Applications », Chemical Reviews, vol. 116, no 14, , p. 7898–936 (PMID27333362, DOI10.1021/acs.chemrev.6b00163)
(en) Göbel U, Sander C, Schneider R, Valencia A, « Correlated mutations and residue contacts in proteins », Proteins, vol. 18, no 4, , p. 309–17 (PMID8208723, DOI10.1002/prot.340180402, S2CID14978727)
(en) Taylor WR, Hatrick K, « Compensating changes in protein multiple sequence alignments », Protein Engineering, vol. 7, no 3, , p. 341–8 (PMID8177883, DOI10.1093/protein/7.3.341)
(en) Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M, « Direct-coupling analysis of residue coevolution captures native contacts across many protein families », Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no 49, , E1293-301 (PMID22106262, PMCID3241805, DOI10.1073/pnas.1111471108, Bibcode2011PNAS..108E1293M, arXiv1110.5223)
(en) Nugent T, Jones DT, « Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis », Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no 24, , E1540-7 (PMID22645369, PMCID3386101, DOI10.1073/pnas.1120036109, Bibcode2012PNAS..109E1540N)
(en) Zhang Y, Skolnick J, « The protein structure prediction problem could be solved using the current PDB library », Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no 4, , p. 1029–34 (PMID15653774, PMCID545829, DOI10.1073/pnas.0407152101, Bibcode2005PNAS..102.1029Z)
(en) Márcio Dorn, Mariel Barbachan e Silva, Luciana S. Buriol et Luis C. Lamb, « Three-dimensional protein structure prediction: Methods and computational strategies », Computational Biology and Chemistry, vol. 53, , p. 251–276 (ISSN1476-9271, PMID25462334, DOI10.1016/j.compbiolchem.2014.10.001, lire en ligne)
semanticscholar.org
api.semanticscholar.org
(en) Göbel U, Sander C, Schneider R, Valencia A, « Correlated mutations and residue contacts in proteins », Proteins, vol. 18, no 4, , p. 309–17 (PMID8208723, DOI10.1002/prot.340180402, S2CID14978727)