W. E. Clark, Aryabatha, Aryabhatiya of Aryabhata, p. 24 et suivantes, lire en ligne
archives-ouvertes.fr
halshs.archives-ouvertes.fr
« Par ce moyen on fait un cloître, en donnant autant aux voies qu’au jardin » in Dominique Raynaud, « Le schème, opérateur de la conception architecturale », Arquitetura Revista, vol. 1, , p. 15-32 (lire en ligne), p. 23.
Cette démonstration, reprise de Apostol 2000, est inspirée selon lui d'une preuve géométrique de l'époque grecque classique. On la trouve sous une forme proche dans un manuel russe de géométrie dû à A. P. Kiselev dans de 1892 et très utilisé selon Alexander Bogomolny - Cut the Knot. Une variante est donnée dans Gardner 2001, p. 12.
Plofker 2009, p. 28 qui donne des références pour certaines d'entre elles note 16 de la même page. Voir aussi l'une de ces reconstructions dans le rapport sur les recherches en éducations de la fédération Wallonie-Bruxelles de 2004 « Pour une culture mathématique accessible à tous », chapitre 20 La Diagonale du carré, p.549-551.
Pour se faire une idée des concepts que les Grecs utilisaient, voir Knorr 1975, p. 14-17 (Introduction, §III. Indispensable definitions) en particulier p. 15.
maa.org
eulerarchive.maa.org
(la) Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum, vol. II (lire en ligne), chap. 4 (« De conversione functionum in series »), p. 292.
Une édition bilingue du XIXe siècle est accessible en ligne. Une traduction de ce passage dont les choix sont longuement discutés et justifiés Caveing 1998, p. 172-176, est donnée par Caveing 1998, p. 176-177, qui discute ensuite son interprétation Caveing 1998, p. 177-186.
Aristote, Analytiques postérieurs, I,23,41 a 26-32 et I,44,50 a 36-38 cité d'après Caveing 1998, p. 132, une édition bilingue du XIXe siècle est accessible en ligne I, 23 et I, 44.
Par exemple dans la Métaphysique, A, 2, Métaphysique, Livres A à E, trad. Bernard Sichère, Paris, Pocket, 2007, p. 35 : « [les hommes] s'étonnent [...] de ce qu'on ne peut mesurer la diagonale du carré, puisqu'il semble tout à fait merveilleux à tous ceux qui n'en ont pas encore envisagé la raison qu'une chose ne puisse pas être mesurée par la plus petite unité. » Mais cette traduction ajoute forcément des précisions à l'original, cf. la note citée précédemment, et note 18 de la traduction Pierron et Zevort, voir aussi la traduction plus littérale de Victor Cousin du même passage qui ne mentionne pas de carré.
ruc.dk
akira.ruc.dk
Cette conclusion est émise par Jens Høyrup. Des éléments de traduction de la tablette sont disponibles à : La pensée algébrique, 12e Colloque Inter-IREM, 1998.