(en) Alexandra Balahur, JesúS M Hermida et AndréS Montoyo, « Detecting implicit expressions of emotion in text: A comparative analysis », Decision Support Systems, vol. 53, no 4, , p. 742–753 (ISSN0167-9236, DOI10.1016/j.dss.2012.05.024, lire en ligne).
(en) Hongliang Yu, Liangke Gui, Michael Madaio et Amy Ogan, Temporally Selective Attention Model for Social and Affective State Recognition in Multimedia Content, ACM, , 1743-1751 p. (ISBN978-1-4503-4906-2, DOI10.1145/3123266.3123413, lire en ligne).
(en) Erik Cambria et Amir Hussain, Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis, Springer Publishing Company, Incorporated, (ISBN978-3319236537, lire en ligne).
O. Martin, I. Kotsia, B. Macq et I. Pitas, 22nd International Conference on Data Engineering Workshops (ICDEW'06), IEEE Computer Society, coll. « Icdew '06 », , 8– (ISBN9780769525716, DOI10.1109/ICDEW.2006.145, S2CID16185196, lire en ligne), « The eNTERFACE'05 Audio-Visual Emotion Database ».
Soujanya Poria, Devamanyu Hazarika, Navonil Majumder et Gautam Naik, « MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations », Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, Association for Computational Linguistics, , p. 527–536 (DOI10.18653/v1/p19-1050, arXiv1810.02508, S2CID52932143).
Lukas Stappen, Björn Schuller, Iulia Lefter, Erik Cambria et Kompatsiaris, Proceedings of the 28th ACM International Conference on Multimedia, Seattle, PA, USA, Association for Computing Machinery, , 4769–4770 p. (ISBN9781450379885, DOI10.1145/3394171.3421901, arXiv2004.14858, S2CID222278714), « Summary of MuSe 2020: Multimodal Sentiment Analysis, Emotion-target Engagement and Trustworthiness Detection in Real-life Media ».
Donghyeon Won, Zachary C. Steinert-Threlkeld et Jungseock Joo, Proceedings of the 25th ACM international conference on Multimedia, New York, NY, USA, Association for Computing Machinery, coll. « MM '17 », , 786–794 p. (ISBN978-1-4503-4906-2, DOI10.1145/3123266.3123282, arXiv1709.06204), « Protest Activity Detection and Perceived Violence Estimation from Social Media Images ».
Shivhare, S. N., et Khethawat, S. (2012). Emotion detection from text. arXiv preprint « 1205.4944 », texte en accès libre, sur arXiv.
(en) Yeşim Ülgen Sönmez et Asaf Varol, « In-depth investigation of speech emotion recognition studies from past to present –The importance of emotion recognition from speech signal for AI– », Intelligent Systems with Applications, vol. 22, , article no 200351 (e-ISSN2667-3053, DOI10.1016/j.iswa.2024.200351, S2CID268446819).
(en) Todd E. Feinberg, « Facial Discrimination and Emotional Recognition in Schizophrenia and Affective Disorders », Archives of General Psychiatry, vol. 43, no 3, , p. 276 (ISSN0003-990X, DOI10.1001/archpsyc.1986.01800030094010, lire en ligne, consulté le ).
(en) Muhammad Najam Dar, Muhammad Usman Akram, Rajamanickam Yuvaraj et Sajid Gul Khawaja, « EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning », Computers in Biology and Medicine, vol. 144, , p. 105327 (DOI10.1016/j.compbiomed.2022.105327, lire en ligne, consulté le ).
(en) Sarah Saadoon Jasim et Alia Karim Abdul Hassan, « Modern drowsiness detection techniques: a review », International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no 3, , p. 2986 (ISSN2722-2578 et 2088-8708, DOI10.11591/ijece.v12i3.pp2986-2995, lire en ligne, consulté le ).
(en) Junwei Sun, Juntao Han, Yanfeng Wang et Peng Liu, « Memristor-Based Neural Network Circuit of Emotion Congruent Memory With Mental Fatigue and Emotion Inhibition », IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no 3, , p. 606–616 (ISSN1932-4545 et 1940-9990, DOI10.1109/TBCAS.2021.3090786, lire en ligne, consulté le ).
(en) Tilo Kircher, Volker Arolt, Andreas Jansen et Martin Pyka, « Effect of Cognitive-Behavioral Therapy on Neural Correlates of Fear Conditioning in Panic Disorder », Biological Psychiatry, vol. 73, no 1, , p. 93–101 (DOI10.1016/j.biopsych.2012.07.026, lire en ligne, consulté le ).
(en) Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray et Ghulam Muhammad, « Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach », Biomedical Signal Processing and Control, vol. 94, , p. 106241 (ISSN1746-8094, DOI10.1016/j.bspc.2024.106241, lire en ligne, consulté le ).
(en) Zhirong Wang, Ming Chen et Guofu Feng, « Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data », Electronics, vol. 12, no 11, , p. 2359 (ISSN2079-9292, DOI10.3390/electronics12112359, lire en ligne, consulté le ).
(en) Kranti Kamble et Joydeep Sengupta, « A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals », Multimedia Tools and Applications, vol. 82, no 18, , p. 27269–27304 (ISSN1573-7721, DOI10.1007/s11042-023-14489-9, lire en ligne, consulté le ).
(en) Ietezaz Ul Hassan, Raja Hashim Ali, Zain ul Abideen et Ali Zeeshan Ijaz, « Towards Effective Emotion Detection: A Comprehensive Machine Learning Approach on EEG Signals », BioMedInformatics, vol. 3, no 4, , p. 1083–1100 (ISSN2673-7426, DOI10.3390/biomedinformatics3040065, lire en ligne, consulté le ).
(en) Arpan Phukan et Deepak Gupta, « Deep feature extraction from EEG signals using xception model for emotion classification », Multimedia Tools and Applications, vol. 83, no 11, , p. 33445–33463 (ISSN1573-7721, DOI10.1007/s11042-023-16941-2, lire en ligne, consulté le ).
(en) Glenn F. Wilson et Christopher A. Russell, « Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks », Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 45, no 4, , p. 635–644 (ISSN0018-7208 et 1547-8181, DOI10.1518/hfes.45.4.635.27088, lire en ligne, consulté le ).
(en) Yan Wang, Wei Song, Wei Tao et Antonio Liotta, « A systematic review on affective computing: emotion models, databases, and recent advances », Information Fusion, vol. 83-84, , p. 19–52 (ISSN1566-2535, DOI10.1016/j.inffus.2022.03.009, lire en ligne, consulté le ).
(en) Geetha A. V., Mala T., Priyanka D. et Uma E., « Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions », Information Fusion, vol. 105, , p. 102218 (ISSN1566-2535, DOI10.1016/j.inffus.2023.102218, lire en ligne, consulté le ).
(en) Nusrat J. Shoumy, Li-Minn Ang, Kah Phooi Seng et D.M.Motiur Rahaman, « Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals », Journal of Network and Computer Applications, vol. 149, , p. 102447 (ISSN1084-8045, DOI10.1016/j.jnca.2019.102447, lire en ligne, consulté le ).
(en) George Caridakis, Ginevra Castellano, Loic Kessous, Amaryllis Raouzaiou, Malatesta, Asteriadis et Karpouzis, Artificial Intelligence and Innovations 2007: From Theory to Applications, vol. 247, coll. « IFIP the International Federation for Information Processing », , 375–388 p. (ISBN978-0-387-74160-4, DOI10.1007/978-0-387-74161-1_41), « Multimodal emotion recognition from expressive faces, body gestures and speech ».
(en) Erik Cambria, « Affective Computing and Sentiment Analysis », IEEE Intelligent Systems, vol. 31, no 2, , p. 102–107 (DOI10.1109/MIS.2016.31, S2CID18580557).
(en) Maite Taboada, Julian Brooke, Milan Tofiloski et Kimberly Voll, « Lexicon-Based Methods for Sentiment Analysis », Computational Linguistics, vol. 37, no 2, , p. 267–307 (ISSN0891-2017, DOI10.1162/coli_a_00049).
(en) Alexandra Balahur, JesúS M Hermida et AndréS Montoyo, « Detecting implicit expressions of emotion in text: A comparative analysis », Decision Support Systems, vol. 53, no 4, , p. 742–753 (ISSN0167-9236, DOI10.1016/j.dss.2012.05.024, lire en ligne).
(en) Walaa Medhat, Ahmed Hassan et Hoda Korashy, « Sentiment analysis algorithms and applications: A survey », Ain Shams Engineering Journal, vol. 5, no 4, , p. 1093–1113 (DOI10.1016/j.asej.2014.04.011).
(en) Fatemeh Hemmatian et Mohammad Karim Sohrabi, « A survey on classification techniques for opinion mining and sentiment analysis », Artificial Intelligence Review, vol. 52, no 3, , p. 1495–1545 (DOI10.1007/s10462-017-9599-6, S2CID11741285).
(en) Shiliang Sun, Chen Luo et Junyu Chen, « A review of natural language processing techniques for opinion mining systems », Information Fusion, vol. 36, , p. 10-25 (DOI10.1016/j.inffus.2016.10.004).
(en) Navonil Majumder, « Deep Learning-Based Document Modeling for Personality Detection from Text », IEEE Intelligent Systems, vol. 32, no 2, , p. 74-79 (DOI10.1109/MIS.2017.23, S2CID206468984).
(en) P. D. Mahendhiran et S. Kannimuthu, « Deep Learning Techniques for Polarity Classification in Multimodal Sentiment Analysis », International Journal of Information Technology & Decision Making, vol. 17, no 3, , p. 883-910 (DOI10.1142/S0219622018500128).
(en) Hongliang Yu, Liangke Gui, Michael Madaio et Amy Ogan, Temporally Selective Attention Model for Social and Affective State Recognition in Multimedia Content, ACM, , 1743-1751 p. (ISBN978-1-4503-4906-2, DOI10.1145/3123266.3123413, lire en ligne).
(en) Matheus Araújo, Pollyanna Gonçalves, Meeyoung Cha et Fabrício Benevenuto, Proceedings of the 23rd International Conference on World Wide Web, ACM, coll. « WWW '14 Companion », , 75–78 p. (ISBN9781450327459, DOI10.1145/2567948.2577013, S2CID11018367), « IFeel: A system that compares and combines sentiment analysis methods ».
G. McKeown, M. Valstar, R. Cowie et M. Pantic, « The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent », IEEE Transactions on Affective Computing, vol. 3, no 1, , p. 5–17 (DOI10.1109/T-AFFC.2011.20, S2CID2995377, lire en ligne).
(en) Carlos Busso, Murtaza Bulut, Chi-Chun Lee et Abe Kazemzadeh, « IEMOCAP: interactive emotional dyadic motion capture database », Language Resources and Evaluation, vol. 42, no 4, , p. 335–359 (ISSN1574-020X, DOI10.1007/s10579-008-9076-6, S2CID11820063).
O. Martin, I. Kotsia, B. Macq et I. Pitas, 22nd International Conference on Data Engineering Workshops (ICDEW'06), IEEE Computer Society, coll. « Icdew '06 », , 8– (ISBN9780769525716, DOI10.1109/ICDEW.2006.145, S2CID16185196, lire en ligne), « The eNTERFACE'05 Audio-Visual Emotion Database ».
Soujanya Poria, Devamanyu Hazarika, Navonil Majumder et Gautam Naik, « MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations », Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, Association for Computational Linguistics, , p. 527–536 (DOI10.18653/v1/p19-1050, arXiv1810.02508, S2CID52932143).
Lukas Stappen, Björn Schuller, Iulia Lefter, Erik Cambria et Kompatsiaris, Proceedings of the 28th ACM International Conference on Multimedia, Seattle, PA, USA, Association for Computing Machinery, , 4769–4770 p. (ISBN9781450379885, DOI10.1145/3394171.3421901, arXiv2004.14858, S2CID222278714), « Summary of MuSe 2020: Multimodal Sentiment Analysis, Emotion-target Engagement and Trustworthiness Detection in Real-life Media ».
Pablo Arnau-González, Stamos Katsigiannis, Miguel Arevalillo-Herráez et Naeem Ramzan, « BED: A new dataset for EEG-based biometrics », IEEE Internet of Things Journal, vol. (Early Access), no 15, , p. 1 (ISSN2327-4662, DOI10.1109/JIOT.2021.3061727, S2CID233916681, lire en ligne).
(en) Michael Bossetta et Rasmus Schmøkel, « Cross-Platform Emotions and Audience Engagement in Social Media Political Campaigning: Comparing Candidates' Facebook and Instagram Images in the 2020 US Election », Political Communication, vol. 40, no 1, , p. 48–68 (ISSN1058-4609, DOI10.1080/10584609.2022.2128949).
(en) Yilang Peng, « What Makes Politicians' Instagram Posts Popular? Analyzing Social Media Strategies of Candidates and Office Holders with Computer Vision », The International Journal of Press/Politics, vol. 26, no 1, , p. 143–166 (ISSN1940-1612, DOI10.1177/1940161220964769, S2CID225108765, lire en ligne).
(en) Mario Haim et Marc Jungblut, « Politicians' Self-depiction and Their News Portrayal: Evidence from 28 Countries Using Visual Computational Analysis », Political Communication, vol. 38, nos 1–2, , p. 55–74 (ISSN1058-4609, DOI10.1080/10584609.2020.1753869, S2CID219481457, lire en ligne).
Donghyeon Won, Zachary C. Steinert-Threlkeld et Jungseock Joo, Proceedings of the 25th ACM international conference on Multimedia, New York, NY, USA, Association for Computing Machinery, coll. « MM '17 », , 786–794 p. (ISBN978-1-4503-4906-2, DOI10.1145/3123266.3123282, arXiv1709.06204), « Protest Activity Detection and Perceived Violence Estimation from Social Media Images ».
(en) Hakpyeong Kim et Taehoon HongShow, « Enhancing emotion recognition using multimodal fusion of physiological, environmental, personal data », Expert Systems with Applications, vol. 249, Part B, , article no 123723 (ISSN0957-4174, e-ISSN1873-6793, DOI10.1016/j.eswa.2024.123723, S2CID268580564).
doi.org
(en) Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray et Ghulam Muhammad, « Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach », Biomedical Signal Processing and Control, vol. 94, , p. 106241 (ISSN1746-8094, DOI10.1016/j.bspc.2024.106241, lire en ligne, consulté le ).
(en) Kranti Kamble et Joydeep Sengupta, « A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals », Multimedia Tools and Applications, vol. 82, no 18, , p. 27269–27304 (ISSN1573-7721, DOI10.1007/s11042-023-14489-9, lire en ligne, consulté le ).
(en) Arpan Phukan et Deepak Gupta, « Deep feature extraction from EEG signals using xception model for emotion classification », Multimedia Tools and Applications, vol. 83, no 11, , p. 33445–33463 (ISSN1573-7721, DOI10.1007/s11042-023-16941-2, lire en ligne, consulté le ).
(en) Yan Wang, Wei Song, Wei Tao et Antonio Liotta, « A systematic review on affective computing: emotion models, databases, and recent advances », Information Fusion, vol. 83-84, , p. 19–52 (ISSN1566-2535, DOI10.1016/j.inffus.2022.03.009, lire en ligne, consulté le ).
(en) Geetha A. V., Mala T., Priyanka D. et Uma E., « Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions », Information Fusion, vol. 105, , p. 102218 (ISSN1566-2535, DOI10.1016/j.inffus.2023.102218, lire en ligne, consulté le ).
(en) Nusrat J. Shoumy, Li-Minn Ang, Kah Phooi Seng et D.M.Motiur Rahaman, « Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals », Journal of Network and Computer Applications, vol. 149, , p. 102447 (ISSN1084-8045, DOI10.1016/j.jnca.2019.102447, lire en ligne, consulté le ).
elsevier.com
linkinghub.elsevier.com
(en) Muhammad Najam Dar, Muhammad Usman Akram, Rajamanickam Yuvaraj et Sajid Gul Khawaja, « EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning », Computers in Biology and Medicine, vol. 144, , p. 105327 (DOI10.1016/j.compbiomed.2022.105327, lire en ligne, consulté le ).
(en) Tilo Kircher, Volker Arolt, Andreas Jansen et Martin Pyka, « Effect of Cognitive-Behavioral Therapy on Neural Correlates of Fear Conditioning in Panic Disorder », Biological Psychiatry, vol. 73, no 1, , p. 93–101 (DOI10.1016/j.biopsych.2012.07.026, lire en ligne, consulté le ).
« Cars May Soon Warn Drivers Before They Nod Off », Huffington Post, (lire en ligne).
iaescore.com
ijece.iaescore.com
(en) Sarah Saadoon Jasim et Alia Karim Abdul Hassan, « Modern drowsiness detection techniques: a review », International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no 3, , p. 2986 (ISSN2722-2578 et 2088-8708, DOI10.11591/ijece.v12i3.pp2986-2995, lire en ligne, consulté le ).
(en) Junwei Sun, Juntao Han, Yanfeng Wang et Peng Liu, « Memristor-Based Neural Network Circuit of Emotion Congruent Memory With Mental Fatigue and Emotion Inhibition », IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no 3, , p. 606–616 (ISSN1932-4545 et 1940-9990, DOI10.1109/TBCAS.2021.3090786, lire en ligne, consulté le ).
Hari Krishna Vydana, P. Phani Kumar, K. Sri Rama Krishna and Anil Kumar Vuppala. "Improved emotion recognition using GMM-UBMs" ; 2015 International Conference on Signal Processing and Communication Engineering Systems
Pablo Arnau-González, Stamos Katsigiannis, Miguel Arevalillo-Herráez et Naeem Ramzan, « BED: A new dataset for EEG-based biometrics », IEEE Internet of Things Journal, vol. (Early Access), no 15, , p. 1 (ISSN2327-4662, DOI10.1109/JIOT.2021.3061727, S2CID233916681, lire en ligne).
(en) Yeşim Ülgen Sönmez et Asaf Varol, « In-depth investigation of speech emotion recognition studies from past to present –The importance of emotion recognition from speech signal for AI– », Intelligent Systems with Applications, vol. 22, , article no 200351 (e-ISSN2667-3053, DOI10.1016/j.iswa.2024.200351, S2CID268446819).
(en) Todd E. Feinberg, « Facial Discrimination and Emotional Recognition in Schizophrenia and Affective Disorders », Archives of General Psychiatry, vol. 43, no 3, , p. 276 (ISSN0003-990X, DOI10.1001/archpsyc.1986.01800030094010, lire en ligne, consulté le ).
(en) Sarah Saadoon Jasim et Alia Karim Abdul Hassan, « Modern drowsiness detection techniques: a review », International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no 3, , p. 2986 (ISSN2722-2578 et 2088-8708, DOI10.11591/ijece.v12i3.pp2986-2995, lire en ligne, consulté le ).
(en) Junwei Sun, Juntao Han, Yanfeng Wang et Peng Liu, « Memristor-Based Neural Network Circuit of Emotion Congruent Memory With Mental Fatigue and Emotion Inhibition », IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no 3, , p. 606–616 (ISSN1932-4545 et 1940-9990, DOI10.1109/TBCAS.2021.3090786, lire en ligne, consulté le ).
(en) Md. Milon Islam, Sheikh Nooruddin, Fakhri Karray et Ghulam Muhammad, « Enhanced multimodal emotion recognition in healthcare analytics: A deep learning based model-level fusion approach », Biomedical Signal Processing and Control, vol. 94, , p. 106241 (ISSN1746-8094, DOI10.1016/j.bspc.2024.106241, lire en ligne, consulté le ).
(en) Zhirong Wang, Ming Chen et Guofu Feng, « Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data », Electronics, vol. 12, no 11, , p. 2359 (ISSN2079-9292, DOI10.3390/electronics12112359, lire en ligne, consulté le ).
(en) Kranti Kamble et Joydeep Sengupta, « A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals », Multimedia Tools and Applications, vol. 82, no 18, , p. 27269–27304 (ISSN1573-7721, DOI10.1007/s11042-023-14489-9, lire en ligne, consulté le ).
(en) Ietezaz Ul Hassan, Raja Hashim Ali, Zain ul Abideen et Ali Zeeshan Ijaz, « Towards Effective Emotion Detection: A Comprehensive Machine Learning Approach on EEG Signals », BioMedInformatics, vol. 3, no 4, , p. 1083–1100 (ISSN2673-7426, DOI10.3390/biomedinformatics3040065, lire en ligne, consulté le ).
(en) Arpan Phukan et Deepak Gupta, « Deep feature extraction from EEG signals using xception model for emotion classification », Multimedia Tools and Applications, vol. 83, no 11, , p. 33445–33463 (ISSN1573-7721, DOI10.1007/s11042-023-16941-2, lire en ligne, consulté le ).
(en) Glenn F. Wilson et Christopher A. Russell, « Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks », Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 45, no 4, , p. 635–644 (ISSN0018-7208 et 1547-8181, DOI10.1518/hfes.45.4.635.27088, lire en ligne, consulté le ).
(en) Yan Wang, Wei Song, Wei Tao et Antonio Liotta, « A systematic review on affective computing: emotion models, databases, and recent advances », Information Fusion, vol. 83-84, , p. 19–52 (ISSN1566-2535, DOI10.1016/j.inffus.2022.03.009, lire en ligne, consulté le ).
(en) Geetha A. V., Mala T., Priyanka D. et Uma E., « Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions », Information Fusion, vol. 105, , p. 102218 (ISSN1566-2535, DOI10.1016/j.inffus.2023.102218, lire en ligne, consulté le ).
(en) Nusrat J. Shoumy, Li-Minn Ang, Kah Phooi Seng et D.M.Motiur Rahaman, « Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals », Journal of Network and Computer Applications, vol. 149, , p. 102447 (ISSN1084-8045, DOI10.1016/j.jnca.2019.102447, lire en ligne, consulté le ).
(en) Maite Taboada, Julian Brooke, Milan Tofiloski et Kimberly Voll, « Lexicon-Based Methods for Sentiment Analysis », Computational Linguistics, vol. 37, no 2, , p. 267–307 (ISSN0891-2017, DOI10.1162/coli_a_00049).
(en) Alexandra Balahur, JesúS M Hermida et AndréS Montoyo, « Detecting implicit expressions of emotion in text: A comparative analysis », Decision Support Systems, vol. 53, no 4, , p. 742–753 (ISSN0167-9236, DOI10.1016/j.dss.2012.05.024, lire en ligne).
(en) Carlos Busso, Murtaza Bulut, Chi-Chun Lee et Abe Kazemzadeh, « IEMOCAP: interactive emotional dyadic motion capture database », Language Resources and Evaluation, vol. 42, no 4, , p. 335–359 (ISSN1574-020X, DOI10.1007/s10579-008-9076-6, S2CID11820063).
Pablo Arnau-González, Stamos Katsigiannis, Miguel Arevalillo-Herráez et Naeem Ramzan, « BED: A new dataset for EEG-based biometrics », IEEE Internet of Things Journal, vol. (Early Access), no 15, , p. 1 (ISSN2327-4662, DOI10.1109/JIOT.2021.3061727, S2CID233916681, lire en ligne).
(en) Michael Bossetta et Rasmus Schmøkel, « Cross-Platform Emotions and Audience Engagement in Social Media Political Campaigning: Comparing Candidates' Facebook and Instagram Images in the 2020 US Election », Political Communication, vol. 40, no 1, , p. 48–68 (ISSN1058-4609, DOI10.1080/10584609.2022.2128949).
(en) Yilang Peng, « What Makes Politicians' Instagram Posts Popular? Analyzing Social Media Strategies of Candidates and Office Holders with Computer Vision », The International Journal of Press/Politics, vol. 26, no 1, , p. 143–166 (ISSN1940-1612, DOI10.1177/1940161220964769, S2CID225108765, lire en ligne).
(en) Mario Haim et Marc Jungblut, « Politicians' Self-depiction and Their News Portrayal: Evidence from 28 Countries Using Visual Computational Analysis », Political Communication, vol. 38, nos 1–2, , p. 55–74 (ISSN1058-4609, DOI10.1080/10584609.2020.1753869, S2CID219481457, lire en ligne).
(en) Hakpyeong Kim et Taehoon HongShow, « Enhancing emotion recognition using multimodal fusion of physiological, environmental, personal data », Expert Systems with Applications, vol. 249, Part B, , article no 123723 (ISSN0957-4174, e-ISSN1873-6793, DOI10.1016/j.eswa.2024.123723, S2CID268580564).
jamanetwork.com
archpsyc.jamanetwork.com
(en) Todd E. Feinberg, « Facial Discrimination and Emotional Recognition in Schizophrenia and Affective Disorders », Archives of General Psychiatry, vol. 43, no 3, , p. 276 (ISSN0003-990X, DOI10.1001/archpsyc.1986.01800030094010, lire en ligne, consulté le ).
(en) Zhirong Wang, Ming Chen et Guofu Feng, « Study on Driver Cross-Subject Emotion Recognition Based on Raw Multi-Channels EEG Data », Electronics, vol. 12, no 11, , p. 2359 (ISSN2079-9292, DOI10.3390/electronics12112359, lire en ligne, consulté le ).
(en) Ietezaz Ul Hassan, Raja Hashim Ali, Zain ul Abideen et Ali Zeeshan Ijaz, « Towards Effective Emotion Detection: A Comprehensive Machine Learning Approach on EEG Signals », BioMedInformatics, vol. 3, no 4, , p. 1083–1100 (ISSN2673-7426, DOI10.3390/biomedinformatics3040065, lire en ligne, consulté le ).
G. McKeown, M. Valstar, R. Cowie et M. Pantic, « The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent », IEEE Transactions on Affective Computing, vol. 3, no 1, , p. 5–17 (DOI10.1109/T-AFFC.2011.20, S2CID2995377, lire en ligne).
(en) Glenn F. Wilson et Christopher A. Russell, « Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks », Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 45, no 4, , p. 635–644 (ISSN0018-7208 et 1547-8181, DOI10.1518/hfes.45.4.635.27088, lire en ligne, consulté le ).
(en) Yilang Peng, « What Makes Politicians' Instagram Posts Popular? Analyzing Social Media Strategies of Candidates and Office Holders with Computer Vision », The International Journal of Press/Politics, vol. 26, no 1, , p. 143–166 (ISSN1940-1612, DOI10.1177/1940161220964769, S2CID225108765, lire en ligne).
Chris DeMuth Jr., « Apple Reads Your Mind », M&A Daily, Seeking Alpha, (lire en ligne, consulté le ).
semanticscholar.org
api.semanticscholar.org
(en) Yeşim Ülgen Sönmez et Asaf Varol, « In-depth investigation of speech emotion recognition studies from past to present –The importance of emotion recognition from speech signal for AI– », Intelligent Systems with Applications, vol. 22, , article no 200351 (e-ISSN2667-3053, DOI10.1016/j.iswa.2024.200351, S2CID268446819).
(en) Fatemeh Hemmatian et Mohammad Karim Sohrabi, « A survey on classification techniques for opinion mining and sentiment analysis », Artificial Intelligence Review, vol. 52, no 3, , p. 1495–1545 (DOI10.1007/s10462-017-9599-6, S2CID11741285).
(en) Navonil Majumder, « Deep Learning-Based Document Modeling for Personality Detection from Text », IEEE Intelligent Systems, vol. 32, no 2, , p. 74-79 (DOI10.1109/MIS.2017.23, S2CID206468984).
(en) Matheus Araújo, Pollyanna Gonçalves, Meeyoung Cha et Fabrício Benevenuto, Proceedings of the 23rd International Conference on World Wide Web, ACM, coll. « WWW '14 Companion », , 75–78 p. (ISBN9781450327459, DOI10.1145/2567948.2577013, S2CID11018367), « IFeel: A system that compares and combines sentiment analysis methods ».
G. McKeown, M. Valstar, R. Cowie et M. Pantic, « The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent », IEEE Transactions on Affective Computing, vol. 3, no 1, , p. 5–17 (DOI10.1109/T-AFFC.2011.20, S2CID2995377, lire en ligne).
(en) Carlos Busso, Murtaza Bulut, Chi-Chun Lee et Abe Kazemzadeh, « IEMOCAP: interactive emotional dyadic motion capture database », Language Resources and Evaluation, vol. 42, no 4, , p. 335–359 (ISSN1574-020X, DOI10.1007/s10579-008-9076-6, S2CID11820063).
O. Martin, I. Kotsia, B. Macq et I. Pitas, 22nd International Conference on Data Engineering Workshops (ICDEW'06), IEEE Computer Society, coll. « Icdew '06 », , 8– (ISBN9780769525716, DOI10.1109/ICDEW.2006.145, S2CID16185196, lire en ligne), « The eNTERFACE'05 Audio-Visual Emotion Database ».
Soujanya Poria, Devamanyu Hazarika, Navonil Majumder et Gautam Naik, « MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations », Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, Association for Computational Linguistics, , p. 527–536 (DOI10.18653/v1/p19-1050, arXiv1810.02508, S2CID52932143).
Lukas Stappen, Björn Schuller, Iulia Lefter, Erik Cambria et Kompatsiaris, Proceedings of the 28th ACM International Conference on Multimedia, Seattle, PA, USA, Association for Computing Machinery, , 4769–4770 p. (ISBN9781450379885, DOI10.1145/3394171.3421901, arXiv2004.14858, S2CID222278714), « Summary of MuSe 2020: Multimodal Sentiment Analysis, Emotion-target Engagement and Trustworthiness Detection in Real-life Media ».
Pablo Arnau-González, Stamos Katsigiannis, Miguel Arevalillo-Herráez et Naeem Ramzan, « BED: A new dataset for EEG-based biometrics », IEEE Internet of Things Journal, vol. (Early Access), no 15, , p. 1 (ISSN2327-4662, DOI10.1109/JIOT.2021.3061727, S2CID233916681, lire en ligne).
(en) Yilang Peng, « What Makes Politicians' Instagram Posts Popular? Analyzing Social Media Strategies of Candidates and Office Holders with Computer Vision », The International Journal of Press/Politics, vol. 26, no 1, , p. 143–166 (ISSN1940-1612, DOI10.1177/1940161220964769, S2CID225108765, lire en ligne).
(en) Mario Haim et Marc Jungblut, « Politicians' Self-depiction and Their News Portrayal: Evidence from 28 Countries Using Visual Computational Analysis », Political Communication, vol. 38, nos 1–2, , p. 55–74 (ISSN1058-4609, DOI10.1080/10584609.2020.1753869, S2CID219481457, lire en ligne).
(en) Hakpyeong Kim et Taehoon HongShow, « Enhancing emotion recognition using multimodal fusion of physiological, environmental, personal data », Expert Systems with Applications, vol. 249, Part B, , article no 123723 (ISSN0957-4174, e-ISSN1873-6793, DOI10.1016/j.eswa.2024.123723, S2CID268580564).
sentic.net
(en) Erik Cambria et Qian Liu « SenticNet 7: A Commonsense-based Neurosymbolic AI Framework for Explainable Sentiment Analysis » () (lire en ligne) — « (ibid.) », dans Proceedings of LREC, p. 3829–3839.
tandfonline.com
(en) Mario Haim et Marc Jungblut, « Politicians' Self-depiction and Their News Portrayal: Evidence from 28 Countries Using Visual Computational Analysis », Political Communication, vol. 38, nos 1–2, , p. 55–74 (ISSN1058-4609, DOI10.1080/10584609.2020.1753869, S2CID219481457, lire en ligne).