Saillance motivationnelle (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Saillance motivationnelle" in French language version.

refsWebsite
Global rank French rank
4th place
12th place
2nd place
3rd place
3rd place
11th place

books.google.com

doi.org

dx.doi.org

  • « Prefrontal/accumbal catecholamine system processes high motivational salience », Front. Behav. Neurosci., vol. 6,‎ , p. 31 (PMID 22754514, PMCID 3384081, DOI 10.3389/fnbeh.2012.00031) :

    « Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. ... Motivation can be conceptually described as a continuum along which stimuli can either reinforce or punish responses to other stimuli. Behaviorally, stimuli that reinforce are called rewarding and those that punish aversive (Skinner, 1953). Reward and aversion describe the impact a stimulus has on behavior, and provided of motivational properties, thus able to induce attribution of motivational salience. ... Attribution of motivational salience is related to the salience of an UCS (Dallman et al., 2003; Pecina et al., 2006). Thus, the more salient an UCS the more likely a neutral (to-be-conditioned) stimulus will be associated with it through motivational salience attribution. Prior experience is a major determinant of the motivational impact of any given stimulus (Borsook et al., 2007) and emotional arousal induced by motivational stimuli increases the attention given to stimuli influencing both the initial perceptual encoding and the consolidation process (Anderson et al., 2006; McGaugh, 2006). »

  • « Neuronal reward and decision signals: from theories to data », Physiological Reviews, vol. 95, no 3,‎ , p. 853–951 (PMID 26109341, PMCID 4491543, DOI 10.1152/physrev.00023.2014) :

    « Rewards in operant conditioning are positive reinforcers. ... Operant behavior gives a good definition for rewards. Anything that makes an individual come back for more is a positive reinforcer and therefore a reward. Although it provides a good definition, positive reinforcement is only one of several reward functions. ... Rewards are attractive. They are motivating and make us exert an effort. ... Rewards induce approach behavior, also called appetitive or preparatory behavior, and consummatory behavior. ... Thus any stimulus, object, event, activity, or situation that has the potential to make us approach and consume it is by definition a reward. ... Rewarding stimuli, objects, events, situations, and activities consist of several major components. First, rewards have basic sensory components (visual, auditory, somatosensory, gustatory, and olfactory) ... Second, rewards are salient and thus elicit attention, which are manifested as orienting responses (FIGURE 1, middle). The salience of rewards derives from three principal factors, namely, their physical intensity and impact (physical salience), their novelty and surprise (novelty/surprise salience), and their general motivational impact shared with punishers (motivational salience). A separate form not included in this scheme, incentive salience, primarily addresses dopamine function in addiction and refers only to approach behavior (as opposed to learning) ... Third, rewards have a value component that determines the positively motivating effects of rewards and is not contained in, nor explained by, the sensory and attentional components (FIGURE 1, right). This component reflects behavioral preferences and thus is subjective and only partially determined by physical parameters. Only this component constitutes what we understand as a reward. It mediates the specific behavioral reinforcing, approach generating, and emotional effects of rewards that are crucial for the organism's survival and reproduction, whereas all other components are only supportive of these functions. ... These emotions are also called liking (for pleasure) and wanting (for desire) in addiction research (471) and strongly support the learning and approach generating functions of reward. »

  • « Pleasure systems in the brain », Neuron, vol. 86, no 3,‎ , p. 646–664 (PMID 25950633, PMCID 4425246, DOI 10.1016/j.neuron.2015.02.018) :

    « An important goal in future for addiction neuroscience is to understand how intense motivation becomes narrowly focused on a particular target. Addiction has been suggested to be partly due to excessive incentive salience produced by sensitized or hyper-reactive dopamine systems that produce intense ‘wanting’ (Robinson and Berridge, 1993). But why one target becomes more ‘wanted’ than all others has not been fully explained. In addicts or agonist-stimulated patients, the repetition of dopamine-stimulation of incentive salience becomes attributed to particular individualized pursuits, such as taking the addictive drug or the particular compulsions. In Pavlovian reward situations, some cues for reward become more ‘wanted’ more than others as powerful motivational magnets, in ways that differ across individuals (Robinson et al., 2014b; Saunders and Robinson, 2013). ... However, hedonic effects might well change over time. As a drug was taken repeatedly, mesolimbic dopaminergic sensitization could consequently occur in susceptible individuals to amplify ‘wanting’ (Leyton and Vezina, 2013; Lodge and Grace, 2011; Wolf and Ferrario, 2010), even if opioid hedonic mechanisms underwent down-regulation due to continual drug stimulation, producing ‘liking’ tolerance. Incentive-sensitization would produce addiction, by selectively magnifying cue-triggered ‘wanting’ to take the drug again, and so powerfully cause motivation even if the drug became less pleasant (Robinson and Berridge, 1993). »

  • « From prediction error to incentive salience: mesolimbic computation of reward motivation », Eur. J. Neurosci., vol. 35, no 7,‎ , p. 1124–1143 (PMID 22487042, PMCID 3325516, DOI 10.1111/j.1460-9568.2012.07990.x) :

    « Here I discuss how mesocorticolimbic mechanisms generate the motivation component of incentive salience. Incentive salience takes Pavlovian learning and memory as one input and as an equally important input takes neurobiological state factors (e.g. drug states, appetite states, satiety states) that can vary independently of learning. Neurobiological state changes can produce unlearned fluctuations or even reversals in the ability of a previously learned reward cue to trigger motivation. Such fluctuations in cue-triggered motivation can dramatically depart from all previously learned values about the associated reward outcome. ... Associative learning and prediction are important contributors to motivation for rewards. Learning gives incentive value to arbitrary cues such as a Pavlovian conditioned stimulus (CS) that is associated with a reward (unconditioned stimulus or UCS). Learned cues for reward are often potent triggers of desires. For example, learned cues can trigger normal appetites in everyone, and can sometimes trigger compulsive urges and relapse in addicts. ... A brief CS encounter (or brief UCS encounter) often primes a pulse of elevated motivation to obtain and consume more reward UCS. This is a signature feature of incentive salience. ... When a Pavlovian CS+ is attributed with incentive salience it not only triggers ‘wanting’ for its UCS, but often the cue itself becomes highly attractive – even to an irrational degree. This cue attraction is another signature feature of incentive salience. ... An attractive CS often elicits behavioral motivated approach, and sometimes an individual may even attempt to ‘consume’ the CS somewhat as its UCS (e.g., eat, drink, smoke, have sex with, take as drug). ‘Wanting’ of a CS can turn also turn the formerly neutral stimulus into an instrumental conditioned reinforcer, so that an individual will work to obtain the cue (however, there exist alternative psychological mechanisms for conditioned reinforcement too). ... Two recognizable features of incentive salience are often visible that can be used in neuroscience experiments: (i) UCS-directed 'wanting' – CS-triggered pulses of intensified 'wanting' for the UCS reward; and (ii) CS-directed 'wanting' – motivated attraction to the Pavlovian cue, which makes the arbitrary CS stimulus into a motivational magnet. »

  • « Reinforcement principles for addiction medicine; from recreational drug use to psychiatric disorder », Prog. Brain Res., progress in Brain Research, vol. 223,‎ , p. 63–76 (ISBN 9780444635457, PMID 26806771, DOI 10.1016/bs.pbr.2015.07.005) :

    « Abused substances (ranging from alcohol to psychostimulants) are initially ingested at regular occasions according to their positive reinforcing properties. Importantly, repeated exposure to rewarding substances sets off a chain of secondary reinforcing events, whereby cues and contexts associated with drug use may themselves become reinforcing and thereby contribute to the continued use and possible abuse of the substance(s) of choice. ...
    An important dimension of reinforcement highly relevant to the addiction process (and particularly relapse) is secondary reinforcement (Stewart, 1992). Secondary reinforcers (in many cases also considered conditioned reinforcers) likely drive the majority of reinforcement processes in humans. In the specific case of drug [addiction], cues and contexts that are intimately and repeatedly associated with drug use will often themselves become reinforcing ... A fundamental piece of Robinson and Berridge's incentive-sensitization theory of addiction posits that the incentive value or attractive nature of such secondary reinforcement processes, in addition to the primary reinforcers themselves, may persist and even become sensitized over time in league with the development of drug addiction (Robinson and Berridge, 1993). ...
    Negative reinforcement is a special condition associated with a strengthening of behavioral responses that terminate some ongoing (presumably aversive) stimulus. In this case we can define a negative reinforcer as a motivational stimulus that strengthens such an “escape” response. Historically, in relation to drug addiction, this phenomenon has been consistently observed in humans whereby drugs of abuse are self-administered to quench a motivational need in the state of withdrawal (Wikler, 1952). »

  • « Psychostimulants and cognition: a continuum of behavioral and cognitive activation », Pharmacol. Rev., vol. 66, no 1,‎ , p. 193–221 (PMID 24344115, PMCID 3880463, DOI 10.1124/pr.112.007054)

nih.gov

ncbi.nlm.nih.gov

  • « Prefrontal/accumbal catecholamine system processes high motivational salience », Front. Behav. Neurosci., vol. 6,‎ , p. 31 (PMID 22754514, PMCID 3384081, DOI 10.3389/fnbeh.2012.00031) :

    « Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. ... Motivation can be conceptually described as a continuum along which stimuli can either reinforce or punish responses to other stimuli. Behaviorally, stimuli that reinforce are called rewarding and those that punish aversive (Skinner, 1953). Reward and aversion describe the impact a stimulus has on behavior, and provided of motivational properties, thus able to induce attribution of motivational salience. ... Attribution of motivational salience is related to the salience of an UCS (Dallman et al., 2003; Pecina et al., 2006). Thus, the more salient an UCS the more likely a neutral (to-be-conditioned) stimulus will be associated with it through motivational salience attribution. Prior experience is a major determinant of the motivational impact of any given stimulus (Borsook et al., 2007) and emotional arousal induced by motivational stimuli increases the attention given to stimuli influencing both the initial perceptual encoding and the consolidation process (Anderson et al., 2006; McGaugh, 2006). »

  • « Neuronal reward and decision signals: from theories to data », Physiological Reviews, vol. 95, no 3,‎ , p. 853–951 (PMID 26109341, PMCID 4491543, DOI 10.1152/physrev.00023.2014) :

    « Rewards in operant conditioning are positive reinforcers. ... Operant behavior gives a good definition for rewards. Anything that makes an individual come back for more is a positive reinforcer and therefore a reward. Although it provides a good definition, positive reinforcement is only one of several reward functions. ... Rewards are attractive. They are motivating and make us exert an effort. ... Rewards induce approach behavior, also called appetitive or preparatory behavior, and consummatory behavior. ... Thus any stimulus, object, event, activity, or situation that has the potential to make us approach and consume it is by definition a reward. ... Rewarding stimuli, objects, events, situations, and activities consist of several major components. First, rewards have basic sensory components (visual, auditory, somatosensory, gustatory, and olfactory) ... Second, rewards are salient and thus elicit attention, which are manifested as orienting responses (FIGURE 1, middle). The salience of rewards derives from three principal factors, namely, their physical intensity and impact (physical salience), their novelty and surprise (novelty/surprise salience), and their general motivational impact shared with punishers (motivational salience). A separate form not included in this scheme, incentive salience, primarily addresses dopamine function in addiction and refers only to approach behavior (as opposed to learning) ... Third, rewards have a value component that determines the positively motivating effects of rewards and is not contained in, nor explained by, the sensory and attentional components (FIGURE 1, right). This component reflects behavioral preferences and thus is subjective and only partially determined by physical parameters. Only this component constitutes what we understand as a reward. It mediates the specific behavioral reinforcing, approach generating, and emotional effects of rewards that are crucial for the organism's survival and reproduction, whereas all other components are only supportive of these functions. ... These emotions are also called liking (for pleasure) and wanting (for desire) in addiction research (471) and strongly support the learning and approach generating functions of reward. »

  • « Pleasure systems in the brain », Neuron, vol. 86, no 3,‎ , p. 646–664 (PMID 25950633, PMCID 4425246, DOI 10.1016/j.neuron.2015.02.018) :

    « An important goal in future for addiction neuroscience is to understand how intense motivation becomes narrowly focused on a particular target. Addiction has been suggested to be partly due to excessive incentive salience produced by sensitized or hyper-reactive dopamine systems that produce intense ‘wanting’ (Robinson and Berridge, 1993). But why one target becomes more ‘wanted’ than all others has not been fully explained. In addicts or agonist-stimulated patients, the repetition of dopamine-stimulation of incentive salience becomes attributed to particular individualized pursuits, such as taking the addictive drug or the particular compulsions. In Pavlovian reward situations, some cues for reward become more ‘wanted’ more than others as powerful motivational magnets, in ways that differ across individuals (Robinson et al., 2014b; Saunders and Robinson, 2013). ... However, hedonic effects might well change over time. As a drug was taken repeatedly, mesolimbic dopaminergic sensitization could consequently occur in susceptible individuals to amplify ‘wanting’ (Leyton and Vezina, 2013; Lodge and Grace, 2011; Wolf and Ferrario, 2010), even if opioid hedonic mechanisms underwent down-regulation due to continual drug stimulation, producing ‘liking’ tolerance. Incentive-sensitization would produce addiction, by selectively magnifying cue-triggered ‘wanting’ to take the drug again, and so powerfully cause motivation even if the drug became less pleasant (Robinson and Berridge, 1993). »

  • « From prediction error to incentive salience: mesolimbic computation of reward motivation », Eur. J. Neurosci., vol. 35, no 7,‎ , p. 1124–1143 (PMID 22487042, PMCID 3325516, DOI 10.1111/j.1460-9568.2012.07990.x) :

    « Here I discuss how mesocorticolimbic mechanisms generate the motivation component of incentive salience. Incentive salience takes Pavlovian learning and memory as one input and as an equally important input takes neurobiological state factors (e.g. drug states, appetite states, satiety states) that can vary independently of learning. Neurobiological state changes can produce unlearned fluctuations or even reversals in the ability of a previously learned reward cue to trigger motivation. Such fluctuations in cue-triggered motivation can dramatically depart from all previously learned values about the associated reward outcome. ... Associative learning and prediction are important contributors to motivation for rewards. Learning gives incentive value to arbitrary cues such as a Pavlovian conditioned stimulus (CS) that is associated with a reward (unconditioned stimulus or UCS). Learned cues for reward are often potent triggers of desires. For example, learned cues can trigger normal appetites in everyone, and can sometimes trigger compulsive urges and relapse in addicts. ... A brief CS encounter (or brief UCS encounter) often primes a pulse of elevated motivation to obtain and consume more reward UCS. This is a signature feature of incentive salience. ... When a Pavlovian CS+ is attributed with incentive salience it not only triggers ‘wanting’ for its UCS, but often the cue itself becomes highly attractive – even to an irrational degree. This cue attraction is another signature feature of incentive salience. ... An attractive CS often elicits behavioral motivated approach, and sometimes an individual may even attempt to ‘consume’ the CS somewhat as its UCS (e.g., eat, drink, smoke, have sex with, take as drug). ‘Wanting’ of a CS can turn also turn the formerly neutral stimulus into an instrumental conditioned reinforcer, so that an individual will work to obtain the cue (however, there exist alternative psychological mechanisms for conditioned reinforcement too). ... Two recognizable features of incentive salience are often visible that can be used in neuroscience experiments: (i) UCS-directed 'wanting' – CS-triggered pulses of intensified 'wanting' for the UCS reward; and (ii) CS-directed 'wanting' – motivated attraction to the Pavlovian cue, which makes the arbitrary CS stimulus into a motivational magnet. »

  • « Reinforcement principles for addiction medicine; from recreational drug use to psychiatric disorder », Prog. Brain Res., progress in Brain Research, vol. 223,‎ , p. 63–76 (ISBN 9780444635457, PMID 26806771, DOI 10.1016/bs.pbr.2015.07.005) :

    « Abused substances (ranging from alcohol to psychostimulants) are initially ingested at regular occasions according to their positive reinforcing properties. Importantly, repeated exposure to rewarding substances sets off a chain of secondary reinforcing events, whereby cues and contexts associated with drug use may themselves become reinforcing and thereby contribute to the continued use and possible abuse of the substance(s) of choice. ...
    An important dimension of reinforcement highly relevant to the addiction process (and particularly relapse) is secondary reinforcement (Stewart, 1992). Secondary reinforcers (in many cases also considered conditioned reinforcers) likely drive the majority of reinforcement processes in humans. In the specific case of drug [addiction], cues and contexts that are intimately and repeatedly associated with drug use will often themselves become reinforcing ... A fundamental piece of Robinson and Berridge's incentive-sensitization theory of addiction posits that the incentive value or attractive nature of such secondary reinforcement processes, in addition to the primary reinforcers themselves, may persist and even become sensitized over time in league with the development of drug addiction (Robinson and Berridge, 1993). ...
    Negative reinforcement is a special condition associated with a strengthening of behavioral responses that terminate some ongoing (presumably aversive) stimulus. In this case we can define a negative reinforcer as a motivational stimulus that strengthens such an “escape” response. Historically, in relation to drug addiction, this phenomenon has been consistently observed in humans whereby drugs of abuse are self-administered to quench a motivational need in the state of withdrawal (Wikler, 1952). »

  • « Psychostimulants and cognition: a continuum of behavioral and cognitive activation », Pharmacol. Rev., vol. 66, no 1,‎ , p. 193–221 (PMID 24344115, PMCID 3880463, DOI 10.1124/pr.112.007054)