(en) T. Figiel, J. Lindenstrauss et V. D. Milman, « The dimension of almost spherical sections of convex bodies », Bull. Amer. Math. Soc., vol. 82, no 4, , p. 575-578 (lire en ligne)
cam.ac.uk
dpmms.cam.ac.uk
(en) W. T. Gowers, « The two cultures of mathematics », dans Mathematics: frontiers and perspectives, AMS, (ISBN978-0-8218-2070-4, lire en ligne), p. 65-78. « The full significance of measure concentration was first realized by Vitali Milman in his revolutionary proof [Mil1971] of the theorem of Dvoretzky […] Dvoretzky's theorem, especially as proved by Milman, is a milestone in the local (that is, finite-dimensional) theory of Banach spaces. While I feel sorry for a mathematician who cannot see its intrinsic appeal, this appeal on its own does not explain the enormous influence that the proof has had, well beyond Banach space theory, as a result of planting the idea of measure concentration in the minds of many mathematicians. »
doi.org
dx.doi.org
(en) Y. Gordon, « Some inequalities for Gaussian processes and applications », Israel J. Math., vol. 50, no 4, , p. 265-289 (DOI10.1007/BF02759761)
(en) G. Schechtman, « A remark concerning the dependence on ε in Dvoretzky's theorem », dans Geometric Aspects of Functional Analysis (1987-88), Springer, coll. « Lecture Notes in Math. » (no 1376), (ISBN0-387-51303-5), p. 274-277 [lien DOI]
(en) N. Alon et V. D. Milman, « Embedding of in finite-dimensional Banach spaces », Israel J. Math., vol. 45, no 4, , p. 265-280 (DOI10.1007/BF02804012)