Théorème de Dvoretzky (French Wikipedia)

Analysis of information sources in references of the Wikipedia article "Théorème de Dvoretzky" in French language version.

refsWebsite
Global rank French rank
2nd place
3rd place
low place
6,579th place
670th place
1,426th place
3,707th place
2,664th place
451st place
1,058th place

ams.org

  • (en) T. Figiel, J. Lindenstrauss et V. D. Milman, « The dimension of almost spherical sections of convex bodies », Bull. Amer. Math. Soc., vol. 82, no 4,‎ , p. 575-578 (lire en ligne)

cam.ac.uk

dpmms.cam.ac.uk

  • (en) W. T. Gowers, « The two cultures of mathematics », dans Mathematics: frontiers and perspectives, AMS, (ISBN 978-0-8218-2070-4, lire en ligne), p. 65-78. « The full significance of measure concentration was first realized by Vitali Milman in his revolutionary proof [Mil1971] of the theorem of Dvoretzky […] Dvoretzky's theorem, especially as proved by Milman, is a milestone in the local (that is, finite-dimensional) theory of Banach spaces. While I feel sorry for a mathematician who cannot see its intrinsic appeal, this appeal on its own does not explain the enormous influence that the proof has had, well beyond Banach space theory, as a result of planting the idea of measure concentration in the minds of many mathematicians. »

doi.org

dx.doi.org

  • (en) Y. Gordon, « Some inequalities for Gaussian processes and applications », Israel J. Math., vol. 50, no 4,‎ , p. 265-289 (DOI 10.1007/BF02759761)
  • (en) G. Schechtman, « A remark concerning the dependence on ε in Dvoretzky's theorem », dans Geometric Aspects of Functional Analysis (1987-88), Springer, coll. « Lecture Notes in Math. » (no 1376),‎ (ISBN 0-387-51303-5), p. 274-277 [lien DOI]
  • (en) N. Alon et V. D. Milman, « Embedding of in finite-dimensional Banach spaces », Israel J. Math., vol. 45, no 4,‎ , p. 265-280 (DOI 10.1007/BF02804012)

eudml.org

projecteuclid.org

  • (en) Y. Gordon, « Gaussian processes and almost spherical sections of convex bodies », Ann. Probab., vol. 16, no 1,‎ , p. 180-188 (lire en ligne)