Charles de Comberousse, Cours de mathématiques, à l'usage des candidats à l'École polytechnique, à l'École normale supérieure, à l'École centrale des arts et manufactures, t. 3, 2e édition, Gauthier-Villars, Paris, 1887, p. 526, §633. Comberousse reprend mot à mot la démonstration de Bonnet, mais précise : « Cette proposition n'est autre chose que le théorème de Rolle [...]. On remarquera que la démonstration précédente ne suppose pas la continuité de la dérivée f'(x), mais seulement que, pour chaque valeur de x comprise dans l'intervalle, elle a une valeur unique et déterminée ». Comberousse en déduit ensuite le théorème des accroissements finis. Dans le t. 4, p. 141, §1238, Comberousse utilise également le théorème de Rolle pour séparer les racines d'une équation.
biodiversitylibrary.org
(it) Giusto Bellavitis, « Sul più facile modo di trovare le radici reali delle equazioni algebriche, e sopra un nuovo metodo per la determinazione delle radici immaginarie », Memorie del Real Istituto Veneto di Scienze, Lettere ed Arte, vol. III, , p. 111 (lire en ligne), énonce que « Rolle osserv'o che fra due radici di una equazione è sempre compresa una radice della sua equazione derivata ».
bnf.fr
gallica.bnf.fr
M. Rolle, Démonstration d'une méthode pour résoudre les égalités de tous les degrés, Paris, (lire en ligne).
J.-L. Lagrange, « Théorie des fonctions analytiques contenant les principes du calcul différentiel, dégagés de toute considération d'infiniment petits ou d'évanouissants, de limites ou de fluxions et réduits à l'analyse algébrique des quantités finies », Journal de l'École polytechnique, 9e cahier, t. III, 1797, §52, p. 49.
Charles de Comberousse, Cours de mathématiques, à l'usage des candidats à l'École polytechnique, à l'École normale supérieure, à l'École centrale des arts et manufactures, t. 3, 2e édition, Gauthier-Villars, Paris, 1887, p. 526, §633. Comberousse reprend mot à mot la démonstration de Bonnet, mais précise : « Cette proposition n'est autre chose que le théorème de Rolle [...]. On remarquera que la démonstration précédente ne suppose pas la continuité de la dérivée f'(x), mais seulement que, pour chaque valeur de x comprise dans l'intervalle, elle a une valeur unique et déterminée ». Comberousse en déduit ensuite le théorème des accroissements finis. Dans le t. 4, p. 141, §1238, Comberousse utilise également le théorème de Rolle pour séparer les racines d'une équation.