(de) K. Weierstrass, « Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen », Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin, (lire en ligne).
bibmath.net
V. F. Bayart, « Théorème de D'Alembert-Gauss », sur bibmath.net : si l'énoncé est conforme à celui que l'on trouve dans la littérature, les remarques historiques sont contredites, par exemple par Dahan et Peiffer 1986.
bnf.fr
visualiseur.bnf.fr
A. L. Cauchy, Cours d'Analyse de l'École Royale Polytechnique, 1re partie : Analyse Algébrique, 1821, chap. X, début du § 1, p. 331-339, où il cite Legendre, Théorie des nombres, 1re partie, § XIV ; Legendre lui-même, s'il ne cite pas Argand, a lu son manuscrit avant 1806, et sa démonstration analytique suit le schéma de celle d'Argand : voir Gilain 1997, p. 56-58.
Christian Gilain, « Le théorème fondamental de l'algèbre et la théorie géométrique des nombres complexes au XIXe siècle », dans D Flament, Le nombre, une hydre à n visages : Entre nombres complexes et vecteurs, Maison des sciences de l'homme, (ISBN978-2-7351-0763-6, lire en ligne), p. 51-74.
(en) H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel et R. Remmert, Numbers, Springer, coll. « GTM » (no 123), (lire en ligne), p. 108.
E. Artin et O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Hansischen Univ., vol. 5, 1927, p. 85-99 [1], traduction en français par le groupe de travail : « Aux sources de la Géométrie Algébrique Réelle » de l'IRMAR.
E. Artin et O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Hansischen Univ., vol. 5, 1927, p. 85-99 [1], traduction en français par le groupe de travail : « Aux sources de la Géométrie Algébrique Réelle » de l'IRMAR.
usp.br
ime.usp.br
Une variante sophistiquée de la preuve de Cauchy, proposée par Littlewood en 1941, permet d'éviter le recours à ce lemme. Elle est décrite dans l'article « Racine d'un nombre complexe ». Voir aussi (en) O. Rio Branco de Oliveira, « The Fundamental Theorem of Algebra: From the Four Basic Operations », Amer. Math. Monthly, vol. 119, no 9, , p. 753-758 (lire en ligne).
wikipedia.org
de.wikipedia.org
Voir par exemple (en) Winfried Scharlau(de), Quadratic and Hermitian forms, Springer, , Thm. 2.3, p. 113.
Il suffirait de remarquer que |P(z)| admet en l'infini une limite strictement supérieure à sa borne inférieure : voir par exemple cet exercice corrigé sur Wikiversité.