Kai Y, Matsumura H, Izui K (June 2003). "Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms". Archives of Biochemistry and Biophysics414 (2): 170–9. PMID12781768. doi:10.1016/S0003-9861(03)00170-X.
Chollet R, Vidal J, O'Leary MH (June 1996). "Phosphoenolpyruvate Carboxylase: A Ubiquitous, Highly Regulated Enzyme in Plants". Annual Review of Plant Physiology and Plant Molecular Biology47 (1): 273–298. PMID15012290. doi:10.1146/annurev.arplant.47.1.273.
Gonzalez DH, Iglesias AA, Andreo CS (February 1986). "Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate". Archives of Biochemistry and Biophysics245 (1): 179–86. PMID3947097. doi:10.1016/0003-9861(86)90203-1.
PDB3ZGE; Paulus JK, Schlieper D, Groth G (19 April 2018). "Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution". Nature Communications4: 1518. PMID23443546. doi:10.1038/ncomms2504.
Fujita N, Izui K, Nishino T, Katsuki H (April 1984). "Reaction mechanism of phosphoenolpyruvate carboxylase. Bicarbonate-dependent dephosphorylation of phosphoenol-alpha-ketobutyrate". Biochemistry23 (8): 1774–9. PMID6326809. doi:10.1021/bi00303a029.
Keeley JE, Rundel PW (2003). "Evolution of CAM and C4Carbon‐Concentrating Mechanisms". International Journal of Plant Sciences164 (S3): S55–S77. doi:10.1086/374192.
Nimmo HG (February 2000). "The regulation of phosphoenolpyruvate carboxylase in CAM plants". Trends in Plant Science5 (2): 75–80. PMID10664617. doi:10.1016/S1360-1385(99)01543-5.
Smith TE (April 1970). "Escherichia coli phosphoenolpyruvate carboxylase: competitive regulation by acetyl-coenzyme A and aspartate". Archives of Biochemistry and Biophysics137 (2): 512–22. PMID4909168. doi:10.1016/0003-9861(70)90469-8.
Coombs J, Maw SL, Baldry CW (December 1974). "Metabolic regulation in C4 photosynthesis: PEP-carboxylase and energy charge". Planta117 (4): 279–92. PMID24458459. doi:10.1007/BF00388023.
Kai Y, Matsumura H, Izui K (June 2003). "Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms". Archives of Biochemistry and Biophysics414 (2): 170–9. PMID12781768. doi:10.1016/S0003-9861(03)00170-X.
Chollet R, Vidal J, O'Leary MH (June 1996). "Phosphoenolpyruvate Carboxylase: A Ubiquitous, Highly Regulated Enzyme in Plants". Annual Review of Plant Physiology and Plant Molecular Biology47 (1): 273–298. PMID15012290. doi:10.1146/annurev.arplant.47.1.273.
Gonzalez DH, Iglesias AA, Andreo CS (February 1986). "Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate". Archives of Biochemistry and Biophysics245 (1): 179–86. PMID3947097. doi:10.1016/0003-9861(86)90203-1.
PDB3ZGE; Paulus JK, Schlieper D, Groth G (19 April 2018). "Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution". Nature Communications4: 1518. PMID23443546. doi:10.1038/ncomms2504.
Fujita N, Izui K, Nishino T, Katsuki H (April 1984). "Reaction mechanism of phosphoenolpyruvate carboxylase. Bicarbonate-dependent dephosphorylation of phosphoenol-alpha-ketobutyrate". Biochemistry23 (8): 1774–9. PMID6326809. doi:10.1021/bi00303a029.
Nimmo HG (February 2000). "The regulation of phosphoenolpyruvate carboxylase in CAM plants". Trends in Plant Science5 (2): 75–80. PMID10664617. doi:10.1016/S1360-1385(99)01543-5.
Morikawa M, Izui K, Taguchi M, Katsuki H (February 1980). "Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. Estimation of the activities in the cells grown on various compounds". Journal of Biochemistry87 (2): 441–9. PMID6987214.
Smith TE (April 1970). "Escherichia coli phosphoenolpyruvate carboxylase: competitive regulation by acetyl-coenzyme A and aspartate". Archives of Biochemistry and Biophysics137 (2): 512–22. PMID4909168. doi:10.1016/0003-9861(70)90469-8.
Coombs J, Maw SL, Baldry CW (December 1974). "Metabolic regulation in C4 photosynthesis: PEP-carboxylase and energy charge". Planta117 (4): 279–92. PMID24458459. doi:10.1007/BF00388023.
PDB3ZGE; Paulus JK, Schlieper D, Groth G (19 April 2018). "Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution". Nature Communications4: 1518. PMID23443546. doi:10.1038/ncomms2504.