Oyedotun KS, Lemire BD (2004). "The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies". J. Biol. Chem.279 (10): 9424–31. PMID14672929. doi:10.1074/jbc.M311876200.
Tomitsuka E, Hirawake H, Goto Y, Taiwaki M, Harada S, Kita K (2003). "Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate-ubiquinone reductase)". J. Biochem134 (2): 191–5. PMID12966066. doi:10.1093/jb/mvg144.
Horsefield R, Yankovskaya V, Sexton G; et al. (2006). "Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction". J. Biol. Chem.281 (11): 7309–16. PMID16407191. doi:10.1074/jbc.M508173200.
Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2006). "The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b". J. Biol. Chem.281 (43): 32310–7. PMID16950775. doi:10.1074/jbc.M607476200.
Muller FL, Liu Y, Abdul-Ghani MA; et al. (2008). "High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates". Biochem. J.409 (2): 491–9. PMID17916065. doi:10.1042/BJ20071162.
nih.gov
ncbi.nlm.nih.gov
Oyedotun KS, Lemire BD (2004). "The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Homology modeling, cofactor docking, and molecular dynamics simulation studies". J. Biol. Chem.279 (10): 9424–31. PMID14672929. doi:10.1074/jbc.M311876200.
Tomitsuka E, Hirawake H, Goto Y, Taiwaki M, Harada S, Kita K (2003). "Direct evidence for two distinct forms of the flavoprotein subunit of human mitochondrial complex II (succinate-ubiquinone reductase)". J. Biochem134 (2): 191–5. PMID12966066. doi:10.1093/jb/mvg144.
Horsefield R, Yankovskaya V, Sexton G; et al. (2006). "Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction". J. Biol. Chem.281 (11): 7309–16. PMID16407191. doi:10.1074/jbc.M508173200.
Kenney WC (1975). "The reaction of N-ethylmaleimide at the active site of succinate dehydrogenase". J. Biol. Chem.250 (8): 3089–94. PMID235539.
Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2006). "The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b". J. Biol. Chem.281 (43): 32310–7. PMID16950775. doi:10.1074/jbc.M607476200.
Muller FL, Liu Y, Abdul-Ghani MA; et al. (2008). "High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates". Biochem. J.409 (2): 491–9. PMID17916065. doi:10.1042/BJ20071162.
sciencedirect.com
Avenot, H. F.; Michailides, T. J. (2010). "Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi". Crop Protection 29 (7): 643. doi:10.1016/j.cropro.2010.02.019.
Dubos, T.; Pasquali, M.; Pogoda, F.; Casanova, A. L.; Hoffmann, L.; Beyer, M. (2013). "Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains". Pesticide Biochemistry and Physiology 105: 28. [ http://www.sciencedirect.com/science/article/pii/S0048357512001769 doi 10.1016/j.pestbp.2012.11.004].