Dixon GH, Kauffman DL, Neurath H (1958). "Amino Acid Sequence in the Region of Diisopropyl Phosphoryl Binding in Dip-Trypsin". J. Am. Chem. Soc.80 (5): 1260–1. doi:10.1021/ja01538a059.
de Haën C, Neurath H, Teller DC (1975). "The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships". J. Mol. Biol.92 (2): 225–59. PMID1142424. doi:10.1016/0022-2836(75)90225-9.
Lesk AM, Fordham WD (1996). "Conservation and variability in the structures of serine proteinases of the chymotrypsin family". J. Mol. Biol.258 (3): 501–37. PMID8642605. doi:10.1006/jmbi.1996.0264.
Schutz CN, Warshel A (2004). "The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases". Proteins55 (3): 711–23. PMID15103633. doi:10.1002/prot.20096.
Fersht, A.R.; Requena, Y (1971). "Mechanism of the Chymotrypsin-Catalyzed Hydrolysis of Amides. pH Dependence of kc and Km.' Kinetic Detection of an Intermediate". J. Am. Chem. Soc.93 (25): 7079–87. PMID5133099. doi:10.1021/ja00754a066.
Zeeberg, B; Caswell, M; Caplow, M (1973). "Concerning a reported change in rate-determining step in chymotrypsin catalysis". J. Am. Chem. Soc.95 (8): 2734–5. PMID4694533. doi:10.1021/ja00789a081.
Brandt W, Wessjohann LA (2005). "The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state". ChemBioChem6 (2): 386–94. PMID15651042. doi:10.1002/cbic.200400276.
Shin S, Yun YS, Koo HM, et al. (2003). "Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad". J. Biol. Chem.278 (27): 24937–43. PMID12711609. doi:10.1074/jbc.M302156200.
Nothling MD, Ganesan A, Condic-Jurkic K, et al. (2017). "Simple Design of an Enzyme-Inspired Supported Catalyst Based on a Catalytic Triad". Chem2 (5): 732–745. doi:10.1016/j.chempr.2017.04.004.
Abrahmsén L, Tom J, Burnier J, et al. (1991). "Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution". Biochemistry30 (17): 4151–9. PMID2021606. doi:10.1021/bi00231a007.
Bhowmick D, Mugesh G (2015). "Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides". Org. Biomol. Chem.13 (34): 9072–82. PMID26220806. doi:10.1039/C5OB01294E.
de Haën C, Neurath H, Teller DC (1975). "The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships". J. Mol. Biol.92 (2): 225–59. PMID1142424. doi:10.1016/0022-2836(75)90225-9.
Lesk AM, Fordham WD (1996). "Conservation and variability in the structures of serine proteinases of the chymotrypsin family". J. Mol. Biol.258 (3): 501–37. PMID8642605. doi:10.1006/jmbi.1996.0264.
Schutz CN, Warshel A (2004). "The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases". Proteins55 (3): 711–23. PMID15103633. doi:10.1002/prot.20096.
Fersht, A.R.; Requena, Y (1971). "Mechanism of the Chymotrypsin-Catalyzed Hydrolysis of Amides. pH Dependence of kc and Km.' Kinetic Detection of an Intermediate". J. Am. Chem. Soc.93 (25): 7079–87. PMID5133099. doi:10.1021/ja00754a066.
Zeeberg, B; Caswell, M; Caplow, M (1973). "Concerning a reported change in rate-determining step in chymotrypsin catalysis". J. Am. Chem. Soc.95 (8): 2734–5. PMID4694533. doi:10.1021/ja00789a081.
Brandt W, Wessjohann LA (2005). "The functional role of selenocysteine (Sec) in the catalysis mechanism of large thioredoxin reductases: proposition of a swapping catalytic triad including a Sec-His-Glu state". ChemBioChem6 (2): 386–94. PMID15651042. doi:10.1002/cbic.200400276.
Shin S, Yun YS, Koo HM, et al. (2003). "Characterization of a novel Ser-cisSer-Lys catalytic triad in comparison with the classical Ser-His-Asp triad". J. Biol. Chem.278 (27): 24937–43. PMID12711609. doi:10.1074/jbc.M302156200.
Abrahmsén L, Tom J, Burnier J, et al. (1991). "Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution". Biochemistry30 (17): 4151–9. PMID2021606. doi:10.1021/bi00231a007.
Bhowmick D, Mugesh G (2015). "Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides". Org. Biomol. Chem.13 (34): 9072–82. PMID26220806. doi:10.1039/C5OB01294E.
Devillanova, Francesco A; Du Mont, Woolf-Walther (2013). Handbook of Chalcogen Chemistry. Vol. 1: new perspectives in sulfur, selenium and tellurium (2nd ed.). Cambridge: RSC. ISBN9781849736237. OCLC868953797.