Loeffler, Kirsten W. (2006). „Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions”. Environmental Science & Technology40 (20), 6318–23. o. DOI:10.1021/es060810w. PMID17120559.
Inoue Y, Kimura A (1995). „Methylglyoxal and regulation of its metabolism in microorganisms”. Adv. Microb. Physiol.37, 177–227. o. DOI:10.1016/S0065-2911(08)60146-0. PMID8540421.
Bellier, Justine (2019). „Methylglyoxal, a Potent Inducer of AGEs, Connects between Diabetes and Cancer”. Diabetes Research and Clinical Practice148, 200–211. o. DOI:10.1016/j.diabres.2019.01.002. PMID30664892.
Li, YC (2012). „Aristolochic acid-induced accumulation of methylglyoxal and Nε-(carboxymethyl)lysine: an important and novel pathway in the pathogenic mechanism for aristolochic acid nephropathy”. Biochem Biophys Res Commun423 (4), 832–7. o. DOI:10.1016/j.bbrc.2012.06.049. PMID22713464.
Thornalley PJ (2003). „Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation”. Biochem. Soc. Trans.31 (Pt 6), 1343–8. o. DOI:10.1042/BST0311343. PMID14641060.
Vander Jagt DL (1993). „Glyoxalase II: molecular characteristics, kinetics and mechanism”. Biochem. Soc. Trans.21 (2), 522–7. o. DOI:10.1042/bst0210522. PMID8359524.
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA, Marnett LJ (2018. szeptember 1.). „Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks”. Proc Natl Acad Sci USA115 (37), 9228–33. o. DOI:10.1073/pnas.1802901115. PMID30150385. PMC6140490.
(2019. március 1.) „Reversible histone glycation is associated with disease-related changes in chromatin architecture”. Nat Commun10 (1), 1289. o. DOI:10.1038/s41467-019-09192-z. PMID30894531. PMC6426841.
Oya, Tomoko (1999). „Methylglyoxal Modification of Protein”. Journal of Biological Chemistry274 (26), 18492–502. o. DOI:10.1074/jbc.274.26.18492. PMID10373458.
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A (2017. július 14.). „Guanine glycation repair by DJ-1/Park7 and its bacterial homologs”. Science357 (6347), 208-211. o. DOI:10.1126/science.aag1095. PMID28596309.
Rabbani N (2011. május 26.). „Glycation of LDL by methylglyoxal increases arterial atherogenicity. A possible contributor to increased risk of cardiovascular disease in diabetes”. Diabetes60 (7), 1973–80. o. DOI:10.2337/db11-0085. PMID21617182. PMC3121424.
(2012) „Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy”. Nature Medicine18 (6), 926–33. o. DOI:10.1038/nm.2750. PMID22581285.
Wallace A, Eady S, Miles M, Martin H, McLachlan A, Rodier M, Willis J, Scott R, Sutherland J (2010. április 1.). „Demonstrating the safety of manuka honey UMF® 20+ in a human clinical trial with healthy individuals”. Br J Nutr103 (7), 1023–8. o. DOI:10.1017/S0007114509992777. PMID20064284.
Degen J, Vogel M, Richter D, Hellwig M, Henle T (2013. október 1.). „Metabolic transit of dietary methylglyoxal”. J Agric Food Chem61 (43), 10253–60. o. DOI:10.1021/jf304946p. PMID23451712.
nih.gov
pubmed.ncbi.nlm.nih.gov
Loeffler, Kirsten W. (2006). „Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions”. Environmental Science & Technology40 (20), 6318–23. o. DOI:10.1021/es060810w. PMID17120559.
Inoue Y, Kimura A (1995). „Methylglyoxal and regulation of its metabolism in microorganisms”. Adv. Microb. Physiol.37, 177–227. o. DOI:10.1016/S0065-2911(08)60146-0. PMID8540421.
Bellier, Justine (2019). „Methylglyoxal, a Potent Inducer of AGEs, Connects between Diabetes and Cancer”. Diabetes Research and Clinical Practice148, 200–211. o. DOI:10.1016/j.diabres.2019.01.002. PMID30664892.
Li, YC (2012). „Aristolochic acid-induced accumulation of methylglyoxal and Nε-(carboxymethyl)lysine: an important and novel pathway in the pathogenic mechanism for aristolochic acid nephropathy”. Biochem Biophys Res Commun423 (4), 832–7. o. DOI:10.1016/j.bbrc.2012.06.049. PMID22713464.
Thornalley PJ (2003). „Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation”. Biochem. Soc. Trans.31 (Pt 6), 1343–8. o. DOI:10.1042/BST0311343. PMID14641060.
Vander Jagt DL (1993). „Glyoxalase II: molecular characteristics, kinetics and mechanism”. Biochem. Soc. Trans.21 (2), 522–7. o. DOI:10.1042/bst0210522. PMID8359524.
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA, Marnett LJ (2018. szeptember 1.). „Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks”. Proc Natl Acad Sci USA115 (37), 9228–33. o. DOI:10.1073/pnas.1802901115. PMID30150385. PMC6140490.
(2019. március 1.) „Reversible histone glycation is associated with disease-related changes in chromatin architecture”. Nat Commun10 (1), 1289. o. DOI:10.1038/s41467-019-09192-z. PMID30894531. PMC6426841.
Oya, Tomoko (1999). „Methylglyoxal Modification of Protein”. Journal of Biological Chemistry274 (26), 18492–502. o. DOI:10.1074/jbc.274.26.18492. PMID10373458.
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A (2017. július 14.). „Guanine glycation repair by DJ-1/Park7 and its bacterial homologs”. Science357 (6347), 208-211. o. DOI:10.1126/science.aag1095. PMID28596309.
Rabbani N (2011. május 26.). „Glycation of LDL by methylglyoxal increases arterial atherogenicity. A possible contributor to increased risk of cardiovascular disease in diabetes”. Diabetes60 (7), 1973–80. o. DOI:10.2337/db11-0085. PMID21617182. PMC3121424.
(2012) „Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy”. Nature Medicine18 (6), 926–33. o. DOI:10.1038/nm.2750. PMID22581285.
Wallace A, Eady S, Miles M, Martin H, McLachlan A, Rodier M, Willis J, Scott R, Sutherland J (2010. április 1.). „Demonstrating the safety of manuka honey UMF® 20+ in a human clinical trial with healthy individuals”. Br J Nutr103 (7), 1023–8. o. DOI:10.1017/S0007114509992777. PMID20064284.
Degen J, Vogel M, Richter D, Hellwig M, Henle T (2013. október 1.). „Metabolic transit of dietary methylglyoxal”. J Agric Food Chem61 (43), 10253–60. o. DOI:10.1021/jf304946p. PMID23451712.
ncbi.nlm.nih.gov
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA, Marnett LJ (2018. szeptember 1.). „Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks”. Proc Natl Acad Sci USA115 (37), 9228–33. o. DOI:10.1073/pnas.1802901115. PMID30150385. PMC6140490.
(2019. március 1.) „Reversible histone glycation is associated with disease-related changes in chromatin architecture”. Nat Commun10 (1), 1289. o. DOI:10.1038/s41467-019-09192-z. PMID30894531. PMC6426841.
Rabbani N (2011. május 26.). „Glycation of LDL by methylglyoxal increases arterial atherogenicity. A possible contributor to increased risk of cardiovascular disease in diabetes”. Diabetes60 (7), 1973–80. o. DOI:10.2337/db11-0085. PMID21617182. PMC3121424.