Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015). „A higher level classification of all living organisms”. PLOS ONE10 (4), e0119248. o. DOI:10.1371/journal.pone.0119248. PMID25923521. PMC4418965.
(2011) „The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium”. BMC Genomics12, 272. o. DOI:10.1186/1471-2164-12-272. PMID21627782. PMC3118789.
(2012) „Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti”. Nucleic Acids Res.40 (18), 9102–14. o. DOI:10.1093/nar/gks700. PMID22833609. PMC3467087.
Tikhonenkov, DV (2014). „Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes”. PLOS ONE9 (4), e95467. o. DOI:10.1371/journal.pone.0095467. PMID24740116. PMC3989336.
(2011) „Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of Alveolates”. PLOS ONE6 (5), e19933. o. DOI:10.1371/journal.pone.0019933. PMID21629701. PMC3101222.
(2001) „Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton”. Nature409 (6820), 603–7. o. DOI:10.1038/35054537. PMID11214316.
(2001) „Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity”. Nature409 (6820), 607–10. o. DOI:10.1038/35054541. PMID11214317.
Cavalier-Smith, Thomas (2017. szeptember 5.). „Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”. Protoplasma255 (1), 297–357. o. DOI:10.1007/s00709-017-1147-3. PMID28875267. PMC5756292.
(2010) „A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids”. Proc Natl Acad Sci USA107 (24), 10949–54. o. DOI:10.1073/pnas.1003335107. PMID20534454. PMC2890776.
(2006) „A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record”. Proc Biol Sci273 (1596), 1867–72. o. DOI:10.1098/rspb.2006.3537. PMID16822745. PMC1634798.
Reyes-Prieto, A (2008). „Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic”. Curr. Biol.18 (13), 956–962. o. DOI:10.1016/j.cub.2008.05.042. PMID18595706. PMC2577054.
Moore RB, Oborník M, Janouskovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008). „A photosynthetic alveolate closely related to apicomplexan parasites”. Nature451 (7181), 959–963. o. DOI:10.1038/nature06635. PMID18288187.
(2002) „The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free living sister group to apicomplexans”. J Eukaryot Microbiol49 (6), 498–504. o. DOI:10.1111/j.1550-7408.2002.tb00235.x. PMID12503687.
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014). „Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages)”. Genome Biol Evol6 (3), 666–684. o. DOI:10.1093/gbe/evu043. PMID24572015. PMC3971594.
memidex.com
alveolate. Memidex (WordNet) Dictionary/Thesaurus. [2016. április 11-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. január 26.)
nih.gov
pubmed.ncbi.nlm.nih.gov
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015). „A higher level classification of all living organisms”. PLOS ONE10 (4), e0119248. o. DOI:10.1371/journal.pone.0119248. PMID25923521. PMC4418965.
(2011) „The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium”. BMC Genomics12, 272. o. DOI:10.1186/1471-2164-12-272. PMID21627782. PMC3118789.
(2012) „Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti”. Nucleic Acids Res.40 (18), 9102–14. o. DOI:10.1093/nar/gks700. PMID22833609. PMC3467087.
Tikhonenkov, DV (2014). „Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes”. PLOS ONE9 (4), e95467. o. DOI:10.1371/journal.pone.0095467. PMID24740116. PMC3989336.
(2011) „Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of Alveolates”. PLOS ONE6 (5), e19933. o. DOI:10.1371/journal.pone.0019933. PMID21629701. PMC3101222.
(2001) „Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton”. Nature409 (6820), 603–7. o. DOI:10.1038/35054537. PMID11214316.
(2001) „Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity”. Nature409 (6820), 607–10. o. DOI:10.1038/35054541. PMID11214317.
Cavalier-Smith, Thomas (2017. szeptember 5.). „Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”. Protoplasma255 (1), 297–357. o. DOI:10.1007/s00709-017-1147-3. PMID28875267. PMC5756292.
(2010) „A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids”. Proc Natl Acad Sci USA107 (24), 10949–54. o. DOI:10.1073/pnas.1003335107. PMID20534454. PMC2890776.
(2006) „A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record”. Proc Biol Sci273 (1596), 1867–72. o. DOI:10.1098/rspb.2006.3537. PMID16822745. PMC1634798.
Reyes-Prieto, A (2008). „Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic”. Curr. Biol.18 (13), 956–962. o. DOI:10.1016/j.cub.2008.05.042. PMID18595706. PMC2577054.
Moore RB, Oborník M, Janouskovec J, Chrudimský T, Vancová M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008). „A photosynthetic alveolate closely related to apicomplexan parasites”. Nature451 (7181), 959–963. o. DOI:10.1038/nature06635. PMID18288187.
(2002) „The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free living sister group to apicomplexans”. J Eukaryot Microbiol49 (6), 498–504. o. DOI:10.1111/j.1550-7408.2002.tb00235.x. PMID12503687.
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014). „Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages)”. Genome Biol Evol6 (3), 666–684. o. DOI:10.1093/gbe/evu043. PMID24572015. PMC3971594.
ncbi.nlm.nih.gov
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015). „A higher level classification of all living organisms”. PLOS ONE10 (4), e0119248. o. DOI:10.1371/journal.pone.0119248. PMID25923521. PMC4418965.
(2011) „The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium”. BMC Genomics12, 272. o. DOI:10.1186/1471-2164-12-272. PMID21627782. PMC3118789.
(2012) „Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti”. Nucleic Acids Res.40 (18), 9102–14. o. DOI:10.1093/nar/gks700. PMID22833609. PMC3467087.
Tikhonenkov, DV (2014). „Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes”. PLOS ONE9 (4), e95467. o. DOI:10.1371/journal.pone.0095467. PMID24740116. PMC3989336.
(2011) „Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of Alveolates”. PLOS ONE6 (5), e19933. o. DOI:10.1371/journal.pone.0019933. PMID21629701. PMC3101222.
Cavalier-Smith, Thomas (2017. szeptember 5.). „Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences”. Protoplasma255 (1), 297–357. o. DOI:10.1007/s00709-017-1147-3. PMID28875267. PMC5756292.
(2010) „A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids”. Proc Natl Acad Sci USA107 (24), 10949–54. o. DOI:10.1073/pnas.1003335107. PMID20534454. PMC2890776.
(2006) „A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record”. Proc Biol Sci273 (1596), 1867–72. o. DOI:10.1098/rspb.2006.3537. PMID16822745. PMC1634798.
Reyes-Prieto, A (2008). „Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic”. Curr. Biol.18 (13), 956–962. o. DOI:10.1016/j.cub.2008.05.042. PMID18595706. PMC2577054.
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H (2014). „Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages)”. Genome Biol Evol6 (3), 666–684. o. DOI:10.1093/gbe/evu043. PMID24572015. PMC3971594.
web.archive.org
alveolate. Memidex (WordNet) Dictionary/Thesaurus. [2016. április 11-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. január 26.)