(2004) „The plant tree of life: an overview and some points of view”. American Journal of Botany91 (10), 1437–1445. o. DOI:10.3732/ajb.91.10.1437. PMID21652302.
Ball, S. (2011. január 1.). „The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis”. Journal of Experimental Botany62 (6), 1775–1801. o. DOI:10.1093/jxb/erq411. PMID21220783.
Wetherbee, Richard (2018. december 9.). „The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes”. Journal of Phycology22 (2), 257–278. o. DOI:10.1111/jpy.12822. PMID30536815.
(2014) „Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?”. Acta Societatis Botanicorum Poloniae83 (4), 263–280. o. DOI:10.5586/asbp.2014.044.
(2001. január 12.) „The unique features of starch metabolism in red algae”. Proceedings of the Royal Society B: Biological Sciences268 (1474), 1417–1422. o. DOI:10.1098/rspb.2001.1644. PMID11429143. PMC1088757.
Adl, S.M. (2005). „The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists”. Journal of Eukaryotic Microbiology52 (5), 399–451. o. DOI:10.1111/j.1550-7408.2005.00053.x. PMID16248873.
(2009) „Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates”. Genome Biology and Evolution1, 231–238. o. DOI:10.1093/gbe/evp022. PMID20333193. PMC2817417.
Cavalier-Smith, Thomas (2009). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
(2009) „Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes”. Genome Biology and Evolution1, 99–113. o. DOI:10.1093/gbe/evp011. PMID20333181. PMC2817406.
Nozaki, H. (2009. december 1.). „Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes”. Molecular Phylogenetics and Evolution53 (3), 872–80. o. DOI:10.1016/j.ympev.2009.08.015. PMID19698794.
Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K (2019. augusztus 1.). „Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited”. Physiol. Plant.168 (3), 630–647. o. DOI:10.1111/ppl.13008. PMID31268560. PMC7065118.
(2011) „Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes”. Current Biology21 (4), 328–333. o. DOI:10.1016/j.cub.2011.01.037. PMID21315598.
Bhattacharya, Debashish (2003). „Photosynthetic eukaryotes unite: endosymbiosis connects the dots”. BioEssays26 (1), 50–60. o. DOI:10.1002/bies.10376. PMID14696040.
Vinogradov S. N. (2010. október 1.). „Phylogenetic Relationships of 3/3 and 2/2 Hemoglobins in Archaeplastida Genomes to Bacterial and Other Eukaryote Hemoglobins”. Molecular Plant4 (1), 42–58. o. DOI:10.1093/mp/ssq040. PMID20952597.
Turmel, M. (2005). „The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales”. BMC Biology3, 22. o. DOI:10.1186/1741-7007-3-22. PMID16236178. PMC1277820.
Cook, Martha E.. Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae, Handbook of the Protists. Springer International Publishing, 185–204. o.. DOI: 10.1007/978-3-319-28149-0_36 (2017). ISBN 9783319281476
Mackiewicz, Paweł (2014. december 31.). „Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?”. Acta Societatis Botanicorum Poloniae83 (4), 263–280. o. DOI:10.5586/asbp.2014.044.
(2017) „Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?”. Current Biology27 (3), R103–R105. o. DOI:10.1016/j.cub.2016.12.006. PMID28171752.
Liang, Zhe (2019). „Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta”. Advanced Science7 (1), 1901850. o. DOI:10.1002/advs.201901850. PMID31921561. PMC6947507.
Puttick, Mark (2018). „The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte”. Current Biology28 (5), 733–745. o. DOI:10.1016/j.cub.2018.01.063. PMID29456145.
Li, Fay Wei (2020). „Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts”. Nature Plants6 (3), 259–272. o. DOI:10.1038/s41477-020-0618-2. PMID32170292. PMC8075897.
Gawryluk, Ryan M. R. (2019. július 17.). „Non-photosynthetic predators are sister to red algae”. Nature572 (7768), 240–243. o. DOI:10.1038/s41586-019-1398-6. PMID31316212.
Schön, Max E. (2021. november 17.). „Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae”. Nature Communications12 (1), 6651. o. DOI:10.1038/s41467-021-26918-0. PMID34789758. PMC8599508.
Bock, Nicholas A. (2021). „Experimental identification and in silico prediction of bacterivory in green algae”. The ISME Journal15 (7), 1987–2000. o. DOI:10.1038/s41396-021-00899-w. PMID33649548. PMC8245530.
Andersson, Jan O. (2002). „A cyanobacterial gene in non-photosynthetic protists – an early chloroplast acquisition in eukaryotes?”. Current Biology12 (2), 115–119. o. DOI:10.1016/S0960-9822(01)00649-2. PMID11818061.
Keeling, Patrick J. (2010). „The endosymbiotic origin, diversification and fate of plastids”. Philosophical Transactions of the Royal Society B: Biological Sciences365 (1541), 729–748. o. DOI:10.1098/rstb.2009.0103. PMID20124341. PMC2817223.
Bengtson, Stefan (2017). „Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae”. PLOS Biology15 (3), e2000735. o. DOI:10.1371/journal.pbio.2000735. PMID28291791. PMC5349422.
Javaux, Emmanuelle J. (2004). „TEM evidence for eukaryotic diversity in mid-Proterozoic oceans”. Geobiology2 (3), 121–132. o. DOI:10.1111/j.1472-4677.2004.00027.x.
(2004) „The plant tree of life: an overview and some points of view”. American Journal of Botany91 (10), 1437–1445. o. DOI:10.3732/ajb.91.10.1437. PMID21652302.
Ball, S. (2011. január 1.). „The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis”. Journal of Experimental Botany62 (6), 1775–1801. o. DOI:10.1093/jxb/erq411. PMID21220783.
Wetherbee, Richard (2018. december 9.). „The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes”. Journal of Phycology22 (2), 257–278. o. DOI:10.1111/jpy.12822. PMID30536815.
(2001. január 12.) „The unique features of starch metabolism in red algae”. Proceedings of the Royal Society B: Biological Sciences268 (1474), 1417–1422. o. DOI:10.1098/rspb.2001.1644. PMID11429143. PMC1088757.
Adl, S.M. (2005). „The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists”. Journal of Eukaryotic Microbiology52 (5), 399–451. o. DOI:10.1111/j.1550-7408.2005.00053.x. PMID16248873.
(2009) „Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates”. Genome Biology and Evolution1, 231–238. o. DOI:10.1093/gbe/evp022. PMID20333193. PMC2817417.
Cavalier-Smith, Thomas (2009). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
(2009) „Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes”. Genome Biology and Evolution1, 99–113. o. DOI:10.1093/gbe/evp011. PMID20333181. PMC2817406.
Nozaki, H. (2009. december 1.). „Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes”. Molecular Phylogenetics and Evolution53 (3), 872–80. o. DOI:10.1016/j.ympev.2009.08.015. PMID19698794.
Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K (2019. augusztus 1.). „Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited”. Physiol. Plant.168 (3), 630–647. o. DOI:10.1111/ppl.13008. PMID31268560. PMC7065118.
(2011) „Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes”. Current Biology21 (4), 328–333. o. DOI:10.1016/j.cub.2011.01.037. PMID21315598.
Bhattacharya, Debashish (2003). „Photosynthetic eukaryotes unite: endosymbiosis connects the dots”. BioEssays26 (1), 50–60. o. DOI:10.1002/bies.10376. PMID14696040.
Vinogradov S. N. (2010. október 1.). „Phylogenetic Relationships of 3/3 and 2/2 Hemoglobins in Archaeplastida Genomes to Bacterial and Other Eukaryote Hemoglobins”. Molecular Plant4 (1), 42–58. o. DOI:10.1093/mp/ssq040. PMID20952597.
Turmel, M. (2005). „The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales”. BMC Biology3, 22. o. DOI:10.1186/1741-7007-3-22. PMID16236178. PMC1277820.
(2017) „Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?”. Current Biology27 (3), R103–R105. o. DOI:10.1016/j.cub.2016.12.006. PMID28171752.
Liang, Zhe (2019). „Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta”. Advanced Science7 (1), 1901850. o. DOI:10.1002/advs.201901850. PMID31921561. PMC6947507.
Puttick, Mark (2018). „The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte”. Current Biology28 (5), 733–745. o. DOI:10.1016/j.cub.2018.01.063. PMID29456145.
Li, Fay Wei (2020). „Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts”. Nature Plants6 (3), 259–272. o. DOI:10.1038/s41477-020-0618-2. PMID32170292. PMC8075897.
Gawryluk, Ryan M. R. (2019. július 17.). „Non-photosynthetic predators are sister to red algae”. Nature572 (7768), 240–243. o. DOI:10.1038/s41586-019-1398-6. PMID31316212.
Schön, Max E. (2021. november 17.). „Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae”. Nature Communications12 (1), 6651. o. DOI:10.1038/s41467-021-26918-0. PMID34789758. PMC8599508.
Bock, Nicholas A. (2021). „Experimental identification and in silico prediction of bacterivory in green algae”. The ISME Journal15 (7), 1987–2000. o. DOI:10.1038/s41396-021-00899-w. PMID33649548. PMC8245530.
Andersson, Jan O. (2002). „A cyanobacterial gene in non-photosynthetic protists – an early chloroplast acquisition in eukaryotes?”. Current Biology12 (2), 115–119. o. DOI:10.1016/S0960-9822(01)00649-2. PMID11818061.
Keeling, Patrick J. (2010). „The endosymbiotic origin, diversification and fate of plastids”. Philosophical Transactions of the Royal Society B: Biological Sciences365 (1541), 729–748. o. DOI:10.1098/rstb.2009.0103. PMID20124341. PMC2817223.
Bengtson, Stefan (2017). „Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae”. PLOS Biology15 (3), e2000735. o. DOI:10.1371/journal.pbio.2000735. PMID28291791. PMC5349422.
(2001. január 12.) „The unique features of starch metabolism in red algae”. Proceedings of the Royal Society B: Biological Sciences268 (1474), 1417–1422. o. DOI:10.1098/rspb.2001.1644. PMID11429143. PMC1088757.
(2009) „Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates”. Genome Biology and Evolution1, 231–238. o. DOI:10.1093/gbe/evp022. PMID20333193. PMC2817417.
Cavalier-Smith, Thomas (2009). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
(2009) „Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes”. Genome Biology and Evolution1, 99–113. o. DOI:10.1093/gbe/evp011. PMID20333181. PMC2817406.
Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K (2019. augusztus 1.). „Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited”. Physiol. Plant.168 (3), 630–647. o. DOI:10.1111/ppl.13008. PMID31268560. PMC7065118.
Turmel, M. (2005). „The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales”. BMC Biology3, 22. o. DOI:10.1186/1741-7007-3-22. PMID16236178. PMC1277820.
Liang, Zhe (2019). „Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta”. Advanced Science7 (1), 1901850. o. DOI:10.1002/advs.201901850. PMID31921561. PMC6947507.
Li, Fay Wei (2020). „Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts”. Nature Plants6 (3), 259–272. o. DOI:10.1038/s41477-020-0618-2. PMID32170292. PMC8075897.
Schön, Max E. (2021. november 17.). „Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae”. Nature Communications12 (1), 6651. o. DOI:10.1038/s41467-021-26918-0. PMID34789758. PMC8599508.
Bock, Nicholas A. (2021). „Experimental identification and in silico prediction of bacterivory in green algae”. The ISME Journal15 (7), 1987–2000. o. DOI:10.1038/s41396-021-00899-w. PMID33649548. PMC8245530.
Keeling, Patrick J. (2010). „The endosymbiotic origin, diversification and fate of plastids”. Philosophical Transactions of the Royal Society B: Biological Sciences365 (1541), 729–748. o. DOI:10.1098/rstb.2009.0103. PMID20124341. PMC2817223.
Bengtson, Stefan (2017). „Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae”. PLOS Biology15 (3), e2000735. o. DOI:10.1371/journal.pbio.2000735. PMID28291791. PMC5349422.