Petitjean, C., Deschamps, P., López-García, P., and Moreira, D. (2014). „Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota.”. Genome Biol. Evol.7, 191–204. o. DOI:10.1093/gbe/evu274. ISSN1759-6653.
(2015) „Archaea associated with human surfaces: not to be underestimated”. FEMS Microbiology Reviews39, 631–48. o. DOI:10.1093/femsre/fuv010. PMID25907112.
Chappe, B. and Albrecht, P. and Michaelis, W. (1982). „Polar Lipids of Archaebacteria in Sediments and Petroleums”. Science217, 65–66. o. DOI:10.1126/science.217.4554.65.
(1988) „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–186. o. DOI:10.1038/331184a0. PMID3340165. (Hozzáférés: 2012. október 5.)
Foster, Peter G. (2009). „The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences364 (1527), 2197–2207. o. DOI:10.1098/rstb.2009.0034. PMID19571240. PMC2873002.
Robertson CE, Harris JK, Spear JR, Pace NR (2005). „Phylogenetic diversity and ecology of environmental Archaea”. Current Opinion in Microbiology8 (6), 638–42. o. DOI:10.1016/j.mib.2005.10.003. PMID16236543.
Dalrymple, G. Brent (2001. december 19.). „The age of the Earth in the twentieth century: a problem (mostly) solved”. Special Publications, Geological Society of London190 (1), 205–221. o. DOI:10.1144/GSL.SP.2001.190.01.14.
Chappe B, Albrecht P, Michaelis W (1982. július 1.). „Polar Lipids of Archaebacteria in Sediments and Petroleums”. Science217 (4554), 65–66. o. DOI:10.1126/science.217.4554.65. PMID17739984.
Brocks JJ, Logan GA, Buick R, Summons RE (1999). „Archean molecular fossils and the early rise of eukaryotes”. Science285 (5430), 1033–6. o. DOI:10.1126/science.285.5430.1033. PMID10446042.
Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008. október 1.). „Reassessing the first appearance of eukaryotes and cyanobacteria”. Nature455 (7216), 1101–4. o. DOI:10.1038/nature07381. PMID18948954.
Hahn, Jürgen (1986). „Traces of Archaebacteria in ancient sediments”. System Applied Microbiology7 (Archaebacteria '85 Proceedings), 178–83. o. DOI:10.1016/S0723-2020(86)80002-9.
Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007). „Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world”. Genome Res.17 (11), 1572–85. o. DOI:10.1101/gr.6454307. PMID17908824. PMC2045140.
Woese CR, Gupta R (1981). „Are archaebacteria merely derived 'prokaryotes'?”. Nature289 (5793), 95–6. o. DOI:10.1038/289095a0. PMID6161309.
DeLong EF (1998. december 1.). „Everything in moderation: archaea as 'non-extremophiles'”. Current Opinion in Genetics & Development8 (6), 649–54. o. DOI:10.1016/S0959-437X(98)80032-4. PMID9914204.
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008). „Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proceedings of the National Academy of Sciences of the United States of America105 (31), 10949–54. o. DOI:10.1073/pnas.0712334105. PMID18664583. PMC2490668.
Pikuta EV, Hoover RB, Tang J (2007). „Microbial extremophiles at the limits of life”. Crit. Rev. Microbiol.33 (3), 183–209. o. DOI:10.1080/10408410701451948. PMID17653987.
López-García P, López-López A, Moreira D, Rodríguez-Valera F (2001. július 1.). „Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front”. FEMS Microbiol. Ecol.36 (2–3), 193–202. o. DOI:10.1016/s0168-6496(01)00133-7. PMID11451524.
Karner MB, DeLong EF, Karl DM (2001). „Archaeal dominance in the mesopelagic zone of the Pacific Ocean”. Nature409 (6819), 507–10. o. DOI:10.1038/35054051. PMID11206545.
Giovannoni SJ, Stingl U. (2005). „Molecular diversity and ecology of microbial plankton”. Nature427 (7057), 343–8. o. DOI:10.1038/nature04158. PMID16163344.
DeLong EF, Karl DM (2005. szeptember 1.). „Genomic perspectives in microbial oceanography”. Nature437 (7057), 336–42. o. DOI:10.1038/nature04157. PMID16163343.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. (2005). „Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437 (7057), 543–6. o. DOI:10.1038/nature03911. PMID16177789.
(2008) „Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic”. Nature456 (7223), 788–791. o. DOI:10.1038/nature07535. PMID19037244.
Teske A, Sørensen KB (2008. január 1.). „Uncultured archaea in deep marine subsurface sediments: have we caught them all?”. ISME J2 (1), 3–18. o. DOI:10.1038/ismej.2007.90. PMID18180743.
Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008. július 1.). „Significant contribution of Archaea to extant biomass in marine subsurface sediments”. Nature454 (7207), 991–4. o. DOI:10.1038/nature07174. PMID18641632.
Walsby, A.E. (1980). „A square bacterium”. Nature283 (5742), 69–71. o. DOI:10.1038/283069a0.
Hixon WG, Searcy DG (1993). „Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts”. BioSystems29 (2–3), 151–60. o. DOI:10.1016/0303-2647(93)90091-P. PMID8374067.
Golyshina OV, Pivovarova TA, Karavaiko GI (2000. május 1.). „Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea”. Int. J. Syst. Evol. Microbiol.50 (3), 997–1006. o. DOI:10.1099/00207713-50-3-997. PMID10843038.
Hall-Stoodley L, Costerton JW, Stoodley P (2004). „Bacterial biofilms: from the natural environment to infectious diseases”. Nature Reviews Microbiology2 (2), 95–108. o. DOI:10.1038/nrmicro821. PMID15040259.
Gevers D, Dawyndt P, Vandamme P (2006). „Stepping stones towards a new prokaryotic taxonomy”. Philosophical Transactions of the Royal Society B361 (1475), 1911–6. o. DOI:10.1098/rstb.2006.1915. PMID17062410. PMC1764938.
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. (2002). „A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont”. Nature417 (6884), 27–8. o. DOI:10.1038/417063a. PMID11986665.
Baker, B.J., Tyson, G.W., Webb, R.I., Flanagan, J., Hugenholtz, P. and Banfield, J.F. (2006). „Lineages of acidophilic Archaea revealed by community genomic analysis. Science”. Science314 (6884), 1933–1935. o. DOI:10.1126/science.1132690. PMID17185602.
Baker BJ, Comolli LR, Dick GJ (2010. május 1.). „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–11. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
(2011. december 19.) „The archaeal 'TACK' superphylum and the origin of eukaryotes.”. Trends Microbiol.19 (12), 580–587. o. DOI:10.1016/j.tim.2011.09.002. PMID22018741.
Woese C, Fox G (1977). „Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proceedings of the National Academy of Sciences of the United States of America74 (11), 5088–90. o. DOI:10.1073/pnas.74.11.5088. PMID270744. PMC432104.
Koonin EV, Mushegian AR, Galperin MY, Walker DR (1997). „Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea”. Mol Microbiol25 (4), 619–637. o. DOI:10.1046/j.1365-2958.1997.4821861.x. PMID9379893.
Gupta R.S. (1998). „What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms”. Mol. Microbiol29 (3), 695–708. o. DOI:10.1046/j.1365-2958.1998.00978.x. PMID9723910.
Lake JA (1988. január 1.). „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–6. o. DOI:10.1038/331184a0. PMID3340165.
Nelson KE, Clayton RA, Gill SR (1999). „Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima”. Nature399 (6734), 323–9. o. DOI:10.1038/20601. PMID10360571.
Gouy M, Li WH (1989. május 1.). „Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree”. Nature339 (6220), 145–7. o. DOI:10.1038/339145a0. PMID2497353.
Lake JA. (1988). „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–6. o. DOI:10.1038/331184a0. PMID3340165.
Thomas NA, Bardy SL, Jarrell KF (2001). „The archaeal flagellum: a different kind of prokaryotic motility structure”. FEMS Microbiol. Rev.25 (2), 147–74. o. DOI:10.1111/j.1574-6976.2001.tb00575.x. PMID11250034.
Rachel R, Wyschkony I, Riehl S, Huber H (2002. március 1.). „The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon”. Archaea1 (1), 9–18. o. DOI:10.1155/2002/307480. PMID15803654. PMC2685547.
Koga Y, Morii H (2005. november 1.). „Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects”. Biosci. Biotechnol. Biochem.69 (11), 2019–34. o. DOI:10.1271/bbb.69.2019. PMID16306681.
Hanford MJ, Peeples TL (2002. január 1.). „Archaeal tetraether lipids: unique structures and applications”. Appl. Biochem. Biotechnol.97 (1), 45–62. o. DOI:10.1385/ABAB:97:1:45. PMID11900115.
Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004. október 1.). „Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid”. Extremophiles8 (5), 411–9. o. DOI:10.1007/s00792-004-0404-5. PMID15258835.
Ng SY, Chaban B, Jarrell KF (2006). „Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications”. J. Mol. Microbiol. Biotechnol.11 (3–5), 167–91. o. DOI:10.1159/000094053. PMID16983194.
Bardy SL, Ng SY, Jarrell KF (2003. február 1.). „Prokaryotic motility structures”. Microbiology (Reading, Engl.)149 (Pt 2), 295–304. o. DOI:10.1099/mic.0.25948-0. PMID12624192.
Valentine DL (2007). „Adaptations to energy stress dictate the ecology and evolution of the Archaea”. Nature Reviews Microbiology5 (4), 316–23. o. DOI:10.1038/nrmicro1619. PMID17334387.
Zillig W (1991. december 1.). „Comparative biochemistry of Archaea and Bacteria”. Current Opinion in Genetics & Development1 (4), 544–51. o. DOI:10.1016/S0959-437X(05)80206-0. PMID1822288.
Klocke M, Nettmann E, Bergmann I (2008. május 1.). „Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass”. Syst. Appl. Microbiol.31 (3), 190–205. o. DOI:10.1016/j.syapm.2008.02.003. PMID18501543.
Based on PDB 1FBBArchiválva2016. március 3-i dátummal a Wayback Machine-ben. Data published in Subramaniam S, Henderson R (2000. augusztus 1.). „Molecular mechanism of vectorial proton translocation by bacteriorhodopsin”. Nature406 (6796), 653–7. o. DOI:10.1038/35020614. PMID10949309.
Mueller-Cajar O, Badger MR (2007. augusztus 1.). „New roads lead to Rubisco in archaebacteria”. BioEssays29 (8), 722–4. o. DOI:10.1002/bies.20616. PMID17621634.
Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007. december 1.). „A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea”. Science318 (5857), 1782–6. o. DOI:10.1126/science.1149976. PMID18079405.
Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005. szeptember 1.). „Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437 (7058), 543–6. o. DOI:10.1038/nature03911. PMID16177789.
Francis CA, Beman JM, Kuypers MM (2007. május 1.). „New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. ISME J1 (1), 19–27. o. DOI:10.1038/ismej.2007.8. PMID18043610.
Galagan JE, Nusbaum C, Roy A (2002. április 1.). „The genome of M. acetivorans reveals extensive metabolic and physiological diversity”. Genome Res.12 (4), 532–42. o. DOI:10.1101/gr.223902. PMID11932238. PMC187521.
Prangishvili D, Forterre P, Garrett RA (2006). „Viruses of the Archaea: a unifying view”. Nature Reviews Microbiology4 (11), 837–48. o. DOI:10.1038/nrmicro1527. PMID17041631.
Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009. március 1.). „An ssDNA virus infecting archaea; A new lineage of viruses with a membrane envelope”. Mol. Microbiol.72 (2), 307–19. o. DOI:10.1111/j.1365-2958.2009.06642.x. PMID19298373.
Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (2012). „Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome”. Proceedings of the National Academy of Sciences of the United States of America109 (33), 13386–13391. o. DOI:10.1073/pnas.1203668109. PMID22826255. PMC3421227.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006). „A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action”. Biol. Direct1, 7. o. DOI:10.1186/1745-6150-1-7. PMID16545108. PMC1462988.
Lykke-Andersen J, Aagaard C, Semionenkov M, Garrett RA (1997. szeptember 1.). „Archaeal introns: splicing, intercellular mobility and evolution”. Trends Biochem. Sci.22 (9), 326–31. o. DOI:10.1016/S0968-0004(97)01113-4. PMID9301331.
Watanabe Y, Yokobori S, Inaba T (2002. január 1.). „Introns in protein-coding genes in Archaea”. FEBS Lett.510 (1–2), 27–30. o. DOI:10.1016/S0014-5793(01)03219-7. PMID11755525.
Yoshinari S, Itoh T, Hallam SJ (2006. augusztus 1.). „Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease”. Biochem. Biophys. Res. Commun.346 (3), 1024–32. o. DOI:10.1016/j.bbrc.2006.06.011. PMID16781672.
(1989) „The mechanism of DNA transfer in the mating system of an archaebacterium”. Science245 (4924), 1387–1389. o. DOI:10.1126/science.2818746. PMID2818746.
(2008) „UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”. Mol Microbiol70 (4), 938–52. o. DOI:10.1111/j.1365-2958.2008.06459.x. PMID18990182.
(2009) „Reactions to UV damage in the model archaeon Sulfolobus solfataricus”. Biochem Soc Trans37 (1), 36–41. o. DOI:10.1042/BST0370036. PMID19143598.
Lindås AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R. (2008). „A unique cell division machinery in the Archaea”. Proc Natl Acad Sci U S A.105 (48), 18942–6. o. DOI:10.1073/pnas.0809467105. PMID18987308. PMC2596248.
Samson RY, Obita T, Freund SM, Williams RL, Bell SD. (2008). „A role for the ESCRT system in cell division in archaea”. Science12 (322), 1710–3. o. DOI:10.1126/science.1165322. PMID19008417. PMC4121953.
Mehta MP, Baross JA (2006. december 1.). „Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon”. Science314 (5806), 1783–6. o. DOI:10.1126/science.1134772. PMID17170307.
Coolen MJ, Abbas B, van Bleijswijk J (2007. április 1.). „Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids”. Environ. Microbiol.9 (4), 1001–16. o. DOI:10.1111/j.1462-2920.2006.01227.x. PMID17359272.
Leininger S, Urich T, Schloter M (2006. augusztus 1.). „Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104), 806–9. o. DOI:10.1038/nature04983. PMID16915287.
Cavicchioli R (2003. december 19.). „Pathogenic archaea: do they exist?”. BioEssays25 (11), 1119–28. o. DOI:10.1002/bies.10354. PMID14579252.
Lepp P (2004. december 19.). „Methanogenic Archaea and human periodontal disease”. Proceedings of the National Academy of Sciences of the United States of America101 (16), 6176–81. o. DOI:10.1073/pnas.0308766101. PMID15067114. PMC395942.
(1996. december 19.) „A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov”. Proceedings of the National Academy of Sciences of the United States of America93 (13), 6241–6. o. DOI:10.1073/pnas.93.13.6241. PMID8692799. PMC39006.
Samuel BS (2006. június 1.). „A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism”. Proceedings of the National Academy of Sciences of the United States of America103 (26), 10011–6. o. DOI:10.1073/pnas.0602187103. PMID16782812. PMC1479766.
Breithaupt H (2001. december 19.). „The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry”. EMBO Rep.2 (11), 968–71. o. DOI:10.1093/embo-reports/kve238. PMID11713183. PMC1084137.
Egorova K (2005. december 19.). „Industrial relevance of thermophilic Archaea”. Current Opinion in Microbiology8 (6), 649–55. o. DOI:10.1016/j.mib.2005.10.015. PMID16257257.
Synowiecki J (2006. december 19.). „Sources, properties and suitability of new thermostable enzymes in food processing”. Crit Rev Food Sci Nutr46 (3), 197–205. o. DOI:10.1080/10408690590957296. PMID16527752.
Jenney FE (2008. január 1.). „The impact of extremophiles on structural genomics (and vice versa)”. Extremophiles12 (1), 39–50. o. DOI:10.1007/s00792-007-0087-9. PMID17563834.
(2015) „Archaea associated with human surfaces: not to be underestimated”. FEMS Microbiology Reviews39, 631–48. o. DOI:10.1093/femsre/fuv010. PMID25907112.
Woese C, Fox G (1977). „Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proc Natl Acad Sci U S A74 (11), 5088–90. o. PMID270744.
(1988) „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–186. o. DOI:10.1038/331184a0. PMID3340165. (Hozzáférés: 2012. október 5.)
Foster, Peter G. (2009). „The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences364 (1527), 2197–2207. o. DOI:10.1098/rstb.2009.0034. PMID19571240. PMC2873002.
Robertson CE, Harris JK, Spear JR, Pace NR (2005). „Phylogenetic diversity and ecology of environmental Archaea”. Current Opinion in Microbiology8 (6), 638–42. o. DOI:10.1016/j.mib.2005.10.003. PMID16236543.
Chappe B, Albrecht P, Michaelis W (1982. július 1.). „Polar Lipids of Archaebacteria in Sediments and Petroleums”. Science217 (4554), 65–66. o. DOI:10.1126/science.217.4554.65. PMID17739984.
Brocks JJ, Logan GA, Buick R, Summons RE (1999). „Archean molecular fossils and the early rise of eukaryotes”. Science285 (5430), 1033–6. o. DOI:10.1126/science.285.5430.1033. PMID10446042.
Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008. október 1.). „Reassessing the first appearance of eukaryotes and cyanobacteria”. Nature455 (7216), 1101–4. o. DOI:10.1038/nature07381. PMID18948954.
Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007). „Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world”. Genome Res.17 (11), 1572–85. o. DOI:10.1101/gr.6454307. PMID17908824. PMC2045140.
Woese CR, Gupta R (1981). „Are archaebacteria merely derived 'prokaryotes'?”. Nature289 (5793), 95–6. o. DOI:10.1038/289095a0. PMID6161309.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. (2005). „Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437 (7057), 543–6. o. PMID16177789.
Cavicchioli R, Curmi PM, Saunders N, Thomas T. (2003). „Pathogenic archaea: do they exist?”. Bioessays.25 (11), 1119–28. o. PMID14579252.
Lepp P, Brinig M, Ouverney C, Palm K, Armitage G, Relman D (2004). „Methanogenic Archaea and human periodontal disease”. Proc Natl Acad Sci U S A101 (16), 6176–81. o. PMID15067114.
Giovannoni SJ, Stingl U. (2005). „Molecular diversity and ecology of microbial plankton”. Nature427 (7057), 343–8. o. PMID16163344.
DeLong EF (1998. december 1.). „Everything in moderation: archaea as 'non-extremophiles'”. Current Opinion in Genetics & Development8 (6), 649–54. o. DOI:10.1016/S0959-437X(98)80032-4. PMID9914204.
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008). „Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proceedings of the National Academy of Sciences of the United States of America105 (31), 10949–54. o. DOI:10.1073/pnas.0712334105. PMID18664583. PMC2490668.
Pikuta EV, Hoover RB, Tang J (2007). „Microbial extremophiles at the limits of life”. Crit. Rev. Microbiol.33 (3), 183–209. o. DOI:10.1080/10408410701451948. PMID17653987.
Davies PC (1996). „The transfer of viable microorganisms between planets”. Ciba Found. Symp.202, 304–14; discussion 314–7. o. PMID9243022.
López-García P, López-López A, Moreira D, Rodríguez-Valera F (2001. július 1.). „Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front”. FEMS Microbiol. Ecol.36 (2–3), 193–202. o. DOI:10.1016/s0168-6496(01)00133-7. PMID11451524.
Karner MB, DeLong EF, Karl DM (2001). „Archaeal dominance in the mesopelagic zone of the Pacific Ocean”. Nature409 (6819), 507–10. o. DOI:10.1038/35054051. PMID11206545.
Giovannoni SJ, Stingl U. (2005). „Molecular diversity and ecology of microbial plankton”. Nature427 (7057), 343–8. o. DOI:10.1038/nature04158. PMID16163344.
DeLong EF, Karl DM (2005. szeptember 1.). „Genomic perspectives in microbial oceanography”. Nature437 (7057), 336–42. o. DOI:10.1038/nature04157. PMID16163343.
Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. (2005). „Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437 (7057), 543–6. o. DOI:10.1038/nature03911. PMID16177789.
(2008) „Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic”. Nature456 (7223), 788–791. o. DOI:10.1038/nature07535. PMID19037244.
Teske A, Sørensen KB (2008. január 1.). „Uncultured archaea in deep marine subsurface sediments: have we caught them all?”. ISME J2 (1), 3–18. o. DOI:10.1038/ismej.2007.90. PMID18180743.
Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008. július 1.). „Significant contribution of Archaea to extant biomass in marine subsurface sediments”. Nature454 (7207), 991–4. o. DOI:10.1038/nature07174. PMID18641632.
Hixon WG, Searcy DG (1993). „Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts”. BioSystems29 (2–3), 151–60. o. DOI:10.1016/0303-2647(93)90091-P. PMID8374067.
Golyshina OV, Pivovarova TA, Karavaiko GI (2000. május 1.). „Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea”. Int. J. Syst. Evol. Microbiol.50 (3), 997–1006. o. DOI:10.1099/00207713-50-3-997. PMID10843038.
Hall-Stoodley L, Costerton JW, Stoodley P (2004). „Bacterial biofilms: from the natural environment to infectious diseases”. Nature Reviews Microbiology2 (2), 95–108. o. DOI:10.1038/nrmicro821. PMID15040259.
Nelson KE. et al. (1999). „Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima”. Nature399 (6734), 323–9. o. PMID10360571.
Lake JA. (1988). „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–6. o. PMID3340165.
Gevers D, Dawyndt P, Vandamme P (2006). „Stepping stones towards a new prokaryotic taxonomy”. Philosophical Transactions of the Royal Society B361 (1475), 1911–6. o. DOI:10.1098/rstb.2006.1915. PMID17062410. PMC1764938.
Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. (2002). „A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont”. Nature417 (6884), 27–8. o. DOI:10.1038/417063a. PMID11986665.
Baker, B.J., Tyson, G.W., Webb, R.I., Flanagan, J., Hugenholtz, P. and Banfield, J.F. (2006). „Lineages of acidophilic Archaea revealed by community genomic analysis. Science”. Science314 (6884), 1933–1935. o. DOI:10.1126/science.1132690. PMID17185602.
Baker BJ, Comolli LR, Dick GJ (2010. május 1.). „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–11. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
(2011. december 19.) „The archaeal 'TACK' superphylum and the origin of eukaryotes.”. Trends Microbiol.19 (12), 580–587. o. DOI:10.1016/j.tim.2011.09.002. PMID22018741.
Woese C, Fox G (1977). „Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proceedings of the National Academy of Sciences of the United States of America74 (11), 5088–90. o. DOI:10.1073/pnas.74.11.5088. PMID270744. PMC432104.
Koonin EV, Mushegian AR, Galperin MY, Walker DR (1997). „Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea”. Mol Microbiol25 (4), 619–637. o. DOI:10.1046/j.1365-2958.1997.4821861.x. PMID9379893.
Gupta R.S. (1998). „What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms”. Mol. Microbiol29 (3), 695–708. o. DOI:10.1046/j.1365-2958.1998.00978.x. PMID9723910.
Lake JA (1988. január 1.). „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–6. o. DOI:10.1038/331184a0. PMID3340165.
Nelson KE, Clayton RA, Gill SR (1999). „Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima”. Nature399 (6734), 323–9. o. DOI:10.1038/20601. PMID10360571.
Gouy M, Li WH (1989. május 1.). „Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree”. Nature339 (6220), 145–7. o. DOI:10.1038/339145a0. PMID2497353.
Lake JA. (1988). „Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences”. Nature331 (6152), 184–6. o. DOI:10.1038/331184a0. PMID3340165.
Thomas NA, Bardy SL, Jarrell KF (2001). „The archaeal flagellum: a different kind of prokaryotic motility structure”. FEMS Microbiol. Rev.25 (2), 147–74. o. DOI:10.1111/j.1574-6976.2001.tb00575.x. PMID11250034.
Rachel R, Wyschkony I, Riehl S, Huber H (2002. március 1.). „The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon”. Archaea1 (1), 9–18. o. DOI:10.1155/2002/307480. PMID15803654. PMC2685547.
Koga Y, Morii H (2005. november 1.). „Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects”. Biosci. Biotechnol. Biochem.69 (11), 2019–34. o. DOI:10.1271/bbb.69.2019. PMID16306681.
Hanford MJ, Peeples TL (2002. január 1.). „Archaeal tetraether lipids: unique structures and applications”. Appl. Biochem. Biotechnol.97 (1), 45–62. o. DOI:10.1385/ABAB:97:1:45. PMID11900115.
Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004. október 1.). „Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid”. Extremophiles8 (5), 411–9. o. DOI:10.1007/s00792-004-0404-5. PMID15258835.
Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH (2000. április 1.). „Phylogenetic analyses of the constituents of Type III protein secretion systems”. J. Mol. Microbiol. Biotechnol.2 (2), 125–44. o. PMID10939240.
Ng SY, Chaban B, Jarrell KF (2006). „Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications”. J. Mol. Microbiol. Biotechnol.11 (3–5), 167–91. o. DOI:10.1159/000094053. PMID16983194.
Bardy SL, Ng SY, Jarrell KF (2003. február 1.). „Prokaryotic motility structures”. Microbiology (Reading, Engl.)149 (Pt 2), 295–304. o. DOI:10.1099/mic.0.25948-0. PMID12624192.
Valentine DL (2007). „Adaptations to energy stress dictate the ecology and evolution of the Archaea”. Nature Reviews Microbiology5 (4), 316–23. o. DOI:10.1038/nrmicro1619. PMID17334387.
Zillig W (1991. december 1.). „Comparative biochemistry of Archaea and Bacteria”. Current Opinion in Genetics & Development1 (4), 544–51. o. DOI:10.1016/S0959-437X(05)80206-0. PMID1822288.
Klocke M, Nettmann E, Bergmann I (2008. május 1.). „Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass”. Syst. Appl. Microbiol.31 (3), 190–205. o. DOI:10.1016/j.syapm.2008.02.003. PMID18501543.
Based on PDB 1FBBArchiválva2016. március 3-i dátummal a Wayback Machine-ben. Data published in Subramaniam S, Henderson R (2000. augusztus 1.). „Molecular mechanism of vectorial proton translocation by bacteriorhodopsin”. Nature406 (6796), 653–7. o. DOI:10.1038/35020614. PMID10949309.
Mueller-Cajar O, Badger MR (2007. augusztus 1.). „New roads lead to Rubisco in archaebacteria”. BioEssays29 (8), 722–4. o. DOI:10.1002/bies.20616. PMID17621634.
Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007. december 1.). „A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea”. Science318 (5857), 1782–6. o. DOI:10.1126/science.1149976. PMID18079405.
Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005. szeptember 1.). „Isolation of an autotrophic ammonia-oxidizing marine archaeon”. Nature437 (7058), 543–6. o. DOI:10.1038/nature03911. PMID16177789.
Francis CA, Beman JM, Kuypers MM (2007. május 1.). „New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation”. ISME J1 (1), 19–27. o. DOI:10.1038/ismej.2007.8. PMID18043610.
Galagan JE, Nusbaum C, Roy A (2002. április 1.). „The genome of M. acetivorans reveals extensive metabolic and physiological diversity”. Genome Res.12 (4), 532–42. o. DOI:10.1101/gr.223902. PMID11932238. PMC187521.
Prangishvili D, Forterre P, Garrett RA (2006). „Viruses of the Archaea: a unifying view”. Nature Reviews Microbiology4 (11), 837–48. o. DOI:10.1038/nrmicro1527. PMID17041631.
Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009. március 1.). „An ssDNA virus infecting archaea; A new lineage of viruses with a membrane envelope”. Mol. Microbiol.72 (2), 307–19. o. DOI:10.1111/j.1365-2958.2009.06642.x. PMID19298373.
Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (2012). „Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome”. Proceedings of the National Academy of Sciences of the United States of America109 (33), 13386–13391. o. DOI:10.1073/pnas.1203668109. PMID22826255. PMC3421227.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006). „A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action”. Biol. Direct1, 7. o. DOI:10.1186/1745-6150-1-7. PMID16545108. PMC1462988.
Lykke-Andersen J, Aagaard C, Semionenkov M, Garrett RA (1997. szeptember 1.). „Archaeal introns: splicing, intercellular mobility and evolution”. Trends Biochem. Sci.22 (9), 326–31. o. DOI:10.1016/S0968-0004(97)01113-4. PMID9301331.
Watanabe Y, Yokobori S, Inaba T (2002. január 1.). „Introns in protein-coding genes in Archaea”. FEBS Lett.510 (1–2), 27–30. o. DOI:10.1016/S0014-5793(01)03219-7. PMID11755525.
Yoshinari S, Itoh T, Hallam SJ (2006. augusztus 1.). „Archaeal pre-mRNA splicing: a connection to hetero-oligomeric splicing endonuclease”. Biochem. Biophys. Res. Commun.346 (3), 1024–32. o. DOI:10.1016/j.bbrc.2006.06.011. PMID16781672.
(1989) „The mechanism of DNA transfer in the mating system of an archaebacterium”. Science245 (4924), 1387–1389. o. DOI:10.1126/science.2818746. PMID2818746.
(2008) „UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation”. Mol Microbiol70 (4), 938–52. o. DOI:10.1111/j.1365-2958.2008.06459.x. PMID18990182.
(2009) „Reactions to UV damage in the model archaeon Sulfolobus solfataricus”. Biochem Soc Trans37 (1), 36–41. o. DOI:10.1042/BST0370036. PMID19143598.
Lindås AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R. (2008). „A unique cell division machinery in the Archaea”. Proc Natl Acad Sci U S A.105 (48), 18942–6. o. DOI:10.1073/pnas.0809467105. PMID18987308. PMC2596248.
Samson RY, Obita T, Freund SM, Williams RL, Bell SD. (2008). „A role for the ESCRT system in cell division in archaea”. Science12 (322), 1710–3. o. DOI:10.1126/science.1165322. PMID19008417. PMC4121953.
Mehta MP, Baross JA (2006. december 1.). „Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon”. Science314 (5806), 1783–6. o. DOI:10.1126/science.1134772. PMID17170307.
Coolen MJ, Abbas B, van Bleijswijk J (2007. április 1.). „Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids”. Environ. Microbiol.9 (4), 1001–16. o. DOI:10.1111/j.1462-2920.2006.01227.x. PMID17359272.
Leininger S, Urich T, Schloter M (2006. augusztus 1.). „Archaea predominate among ammonia-oxidizing prokaryotes in soils”. Nature442 (7104), 806–9. o. DOI:10.1038/nature04983. PMID16915287.
Cavicchioli R (2003. december 19.). „Pathogenic archaea: do they exist?”. BioEssays25 (11), 1119–28. o. DOI:10.1002/bies.10354. PMID14579252.
Lepp P (2004. december 19.). „Methanogenic Archaea and human periodontal disease”. Proceedings of the National Academy of Sciences of the United States of America101 (16), 6176–81. o. DOI:10.1073/pnas.0308766101. PMID15067114. PMC395942.
(1996. december 19.) „A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov”. Proceedings of the National Academy of Sciences of the United States of America93 (13), 6241–6. o. DOI:10.1073/pnas.93.13.6241. PMID8692799. PMC39006.
Samuel BS (2006. június 1.). „A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism”. Proceedings of the National Academy of Sciences of the United States of America103 (26), 10011–6. o. DOI:10.1073/pnas.0602187103. PMID16782812. PMC1479766.
Breithaupt H (2001. december 19.). „The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry”. EMBO Rep.2 (11), 968–71. o. DOI:10.1093/embo-reports/kve238. PMID11713183. PMC1084137.
Egorova K (2005. december 19.). „Industrial relevance of thermophilic Archaea”. Current Opinion in Microbiology8 (6), 649–55. o. DOI:10.1016/j.mib.2005.10.015. PMID16257257.
Synowiecki J (2006. december 19.). „Sources, properties and suitability of new thermostable enzymes in food processing”. Crit Rev Food Sci Nutr46 (3), 197–205. o. DOI:10.1080/10408690590957296. PMID16527752.
Jenney FE (2008. január 1.). „The impact of extremophiles on structural genomics (and vice versa)”. Extremophiles12 (1), 39–50. o. DOI:10.1007/s00792-007-0087-9. PMID17563834.
Foster, Peter G. (2009). „The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences364 (1527), 2197–2207. o. DOI:10.1098/rstb.2009.0034. PMID19571240. PMC2873002.
Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007). „Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world”. Genome Res.17 (11), 1572–85. o. DOI:10.1101/gr.6454307. PMID17908824. PMC2045140.
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008). „Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation”. Proceedings of the National Academy of Sciences of the United States of America105 (31), 10949–54. o. DOI:10.1073/pnas.0712334105. PMID18664583. PMC2490668.
Gevers D, Dawyndt P, Vandamme P (2006). „Stepping stones towards a new prokaryotic taxonomy”. Philosophical Transactions of the Royal Society B361 (1475), 1911–6. o. DOI:10.1098/rstb.2006.1915. PMID17062410. PMC1764938.
Baker BJ, Comolli LR, Dick GJ (2010. május 1.). „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–11. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
Medical Microbiology, 4, Galveston (TX): University of Texas Medical Branch at Galveston (1996. december 19.). Hozzáférés ideje: 2014. november 5.
Woese C, Fox G (1977). „Phylogenetic structure of the prokaryotic domain: the primary kingdoms”. Proceedings of the National Academy of Sciences of the United States of America74 (11), 5088–90. o. DOI:10.1073/pnas.74.11.5088. PMID270744. PMC432104.
Rachel R, Wyschkony I, Riehl S, Huber H (2002. március 1.). „The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon”. Archaea1 (1), 9–18. o. DOI:10.1155/2002/307480. PMID15803654. PMC2685547.
Galagan JE, Nusbaum C, Roy A (2002. április 1.). „The genome of M. acetivorans reveals extensive metabolic and physiological diversity”. Genome Res.12 (4), 532–42. o. DOI:10.1101/gr.223902. PMID11932238. PMC187521.
Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D (2012). „Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome”. Proceedings of the National Academy of Sciences of the United States of America109 (33), 13386–13391. o. DOI:10.1073/pnas.1203668109. PMID22826255. PMC3421227.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006). „A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action”. Biol. Direct1, 7. o. DOI:10.1186/1745-6150-1-7. PMID16545108. PMC1462988.
Lindås AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R. (2008). „A unique cell division machinery in the Archaea”. Proc Natl Acad Sci U S A.105 (48), 18942–6. o. DOI:10.1073/pnas.0809467105. PMID18987308. PMC2596248.
Samson RY, Obita T, Freund SM, Williams RL, Bell SD. (2008). „A role for the ESCRT system in cell division in archaea”. Science12 (322), 1710–3. o. DOI:10.1126/science.1165322. PMID19008417. PMC4121953.
Lepp P (2004. december 19.). „Methanogenic Archaea and human periodontal disease”. Proceedings of the National Academy of Sciences of the United States of America101 (16), 6176–81. o. DOI:10.1073/pnas.0308766101. PMID15067114. PMC395942.
(1996. december 19.) „A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov”. Proceedings of the National Academy of Sciences of the United States of America93 (13), 6241–6. o. DOI:10.1073/pnas.93.13.6241. PMID8692799. PMC39006.
Samuel BS (2006. június 1.). „A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism”. Proceedings of the National Academy of Sciences of the United States of America103 (26), 10011–6. o. DOI:10.1073/pnas.0602187103. PMID16782812. PMC1479766.
Breithaupt H (2001. december 19.). „The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry”. EMBO Rep.2 (11), 968–71. o. DOI:10.1093/embo-reports/kve238. PMID11713183. PMC1084137.
Based on PDB 1FBBArchiválva2016. március 3-i dátummal a Wayback Machine-ben. Data published in Subramaniam S, Henderson R (2000. augusztus 1.). „Molecular mechanism of vectorial proton translocation by bacteriorhodopsin”. Nature406 (6796), 653–7. o. DOI:10.1038/35020614. PMID10949309.
Barns, Sue and Burggraf, Siegfried. (1997) CrenarchaeotaArchiválva2012. május 2-i dátummal a Wayback Machine-ben. Version 1 January 1997. in The Tree of Life Web Project
Barns, Sue and Burggraf, Siegfried. (1997) CrenarchaeotaArchiválva2012. május 2-i dátummal a Wayback Machine-ben. Version 1 January 1997. in The Tree of Life Web Project
Based on PDB 1FBBArchiválva2016. március 3-i dátummal a Wayback Machine-ben. Data published in Subramaniam S, Henderson R (2000. augusztus 1.). „Molecular mechanism of vectorial proton translocation by bacteriorhodopsin”. Nature406 (6796), 653–7. o. DOI:10.1038/35020614. PMID10949309.
Petitjean, C., Deschamps, P., López-García, P., and Moreira, D. (2014). „Rooting the Domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota.”. Genome Biol. Evol.7, 191–204. o. DOI:10.1093/gbe/evu274. ISSN1759-6653.