(2018) „Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell172 (6), 1181–1197. o. DOI:10.1016/j.cell.2018.02.016. PMID29522741.
(2020) „Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)”. Protoplasma257 (3), 621–753. o. DOI:10.1007/s00709-019-01442-7. PMID31900730. PMC7203096.
(2017. április 6.) „Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater”. PLOS ONE12 (4), e0174930. o. DOI:10.1371/journal.pone.0174930. PMID28384184. PMC5383146.
Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (2015. március 1.). „Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling”. Current Biology25 (6), 690–701. o. DOI:10.1016/j.cub.2015.01.014. PMID25702576.
(2009. február 1.) „Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”. The ISME Journal3 (2), 159–167. o. DOI:10.1038/ismej.2008.99. PMID18946497.
(2006. december 1.) „Lineages of acidophilic archaea revealed by community genomic analysis”. Science314 (5807), 1933–1935. o. DOI:10.1126/science.1132690. PMID17185602.
(2010. május 1.) „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–8811. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
(2016. április 1.) „High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes”. Environmental Microbiology Reports8 (2), 210–217. o. DOI:10.1111/1758-2229.12370. PMID26711582.
(2012. január 1.) „De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. The ISME Journal6 (1), 81–93. o. DOI:10.1038/ismej.2011.78. PMID21716304. PMC3246234.
(2003. október 1.) „The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proceedings of the National Academy of Sciences of the United States of America100 (22), 12984–12988. o. DOI:10.1073/pnas.1735403100. PMID14566062. PMC240731.
(2013. december 1.) „Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.”. Biology Direct8 (1), 9. o. DOI:10.1186/1745-6150-8-9. PMID23607440. PMC3655853.
(2017. június 1.) „Integrative modeling of gene and genome evolution roots the archaeal tree of life”. Proceedings of the National Academy of Sciences of the United States of America114 (23), E4602–E4611. o. DOI:10.1073/pnas.1618463114. PMID28533395. PMC5468678.
(2020. augusztus 1.) „Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution”. Nature Communications11 (1), 3939. o. DOI:10.1038/s41467-020-17408-w. PMID32770105. PMC7414124.
(2018) „Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life”. Cell172 (6), 1181–1197. o. DOI:10.1016/j.cell.2018.02.016. PMID29522741.
(2020) „Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)”. Protoplasma257 (3), 621–753. o. DOI:10.1007/s00709-019-01442-7. PMID31900730. PMC7203096.
(2017. április 6.) „Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater”. PLOS ONE12 (4), e0174930. o. DOI:10.1371/journal.pone.0174930. PMID28384184. PMC5383146.
Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (2015. március 1.). „Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling”. Current Biology25 (6), 690–701. o. DOI:10.1016/j.cub.2015.01.014. PMID25702576.
(2009. február 1.) „Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon”. The ISME Journal3 (2), 159–167. o. DOI:10.1038/ismej.2008.99. PMID18946497.
(2006. december 1.) „Lineages of acidophilic archaea revealed by community genomic analysis”. Science314 (5807), 1933–1935. o. DOI:10.1126/science.1132690. PMID17185602.
(2010. május 1.) „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–8811. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
(2016. április 1.) „High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes”. Environmental Microbiology Reports8 (2), 210–217. o. DOI:10.1111/1758-2229.12370. PMID26711582.
(2012. január 1.) „De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. The ISME Journal6 (1), 81–93. o. DOI:10.1038/ismej.2011.78. PMID21716304. PMC3246234.
(2003. október 1.) „The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proceedings of the National Academy of Sciences of the United States of America100 (22), 12984–12988. o. DOI:10.1073/pnas.1735403100. PMID14566062. PMC240731.
(2013. december 1.) „Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.”. Biology Direct8 (1), 9. o. DOI:10.1186/1745-6150-8-9. PMID23607440. PMC3655853.
(2017. június 1.) „Integrative modeling of gene and genome evolution roots the archaeal tree of life”. Proceedings of the National Academy of Sciences of the United States of America114 (23), E4602–E4611. o. DOI:10.1073/pnas.1618463114. PMID28533395. PMC5468678.
(2020. augusztus 1.) „Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution”. Nature Communications11 (1), 3939. o. DOI:10.1038/s41467-020-17408-w. PMID32770105. PMC7414124.
ncbi.nlm.nih.gov
(2020) „Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)”. Protoplasma257 (3), 621–753. o. DOI:10.1007/s00709-019-01442-7. PMID31900730. PMC7203096.
(2017. április 6.) „Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater”. PLOS ONE12 (4), e0174930. o. DOI:10.1371/journal.pone.0174930. PMID28384184. PMC5383146.
(2010. május 1.) „Enigmatic, ultrasmall, uncultivated Archaea”. Proceedings of the National Academy of Sciences of the United States of America107 (19), 8806–8811. o. DOI:10.1073/pnas.0914470107. PMID20421484. PMC2889320.
(2012. január 1.) „De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities”. The ISME Journal6 (1), 81–93. o. DOI:10.1038/ismej.2011.78. PMID21716304. PMC3246234.
(2003. október 1.) „The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proceedings of the National Academy of Sciences of the United States of America100 (22), 12984–12988. o. DOI:10.1073/pnas.1735403100. PMID14566062. PMC240731.
(2013. december 1.) „Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.”. Biology Direct8 (1), 9. o. DOI:10.1186/1745-6150-8-9. PMID23607440. PMC3655853.
(2017. június 1.) „Integrative modeling of gene and genome evolution roots the archaeal tree of life”. Proceedings of the National Academy of Sciences of the United States of America114 (23), E4602–E4611. o. DOI:10.1073/pnas.1618463114. PMID28533395. PMC5468678.
(2020. augusztus 1.) „Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution”. Nature Communications11 (1), 3939. o. DOI:10.1038/s41467-020-17408-w. PMID32770105. PMC7414124.