(2013) „Representation Learning: A Review and New Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence35 (8), 1798–1828. o. DOI:10.1109/tpami.2013.50. PMID23787338. arXiv 1206.5538.
Multi-column deep neural networks for image classification, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3642–3649. o.. DOI: 10.1109/cvpr.2012.6248110 (2012). ISBN 978-1-4673-1228-8
(2013) „Representation Learning: A Review and New Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence35 (8), 1798–1828. o. DOI:10.1109/tpami.2013.50. PMID23787338. arXiv 1206.5538.
(1969) „Visual feature extraction by a multilayered network of analog threshold elements”. IEEE Transactions on Systems Science and Cybernetics5 (4), 322–333. o. DOI:10.1109/TSSC.1969.300225.
(2017) „Neural network with unbounded activation functions is universal approximator”. Applied and Computational Harmonic Analysis43 (2), 233–268. o. DOI:10.1016/j.acha.2015.12.005. arXiv 1505.03654.
(2013) „Representation Learning: A Review and New Perspectives”. IEEE Transactions on Pattern Analysis and Machine Intelligence35 (8), 1798–1828. o. DOI:10.1109/tpami.2013.50. PMID23787338. arXiv 1206.5538.
Rina Dechter (1986). Learning while searching in constraint-satisfaction problems. University of California, Computer Science Department, Cognitive Systems Laboratory.OnlineArchiválva 2016. április 19-i dátummal a Wayback Machine-ben.
Rina Dechter (1986). Learning while searching in constraint-satisfaction problems. University of California, Computer Science Department, Cognitive Systems Laboratory.OnlineArchiválva 2016. április 19-i dátummal a Wayback Machine-ben.