Dezoxiribozim (Hungarian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Dezoxiribozim" in Hungarian language version.

refsWebsite
Global rank Hungarian rank
4th place
11th place
2nd place
8th place
5th place
22nd place
5,225th place
5,201st place
6th place
14th place
2,594th place
4,360th place
1,248th place
3,437th place
4,725th place
low place
low place
low place
1st place
1st place
low place
low place
2,779th place
6,702nd place
low place
low place

acs.org

cen.acs.org

archive.org

clinicaltrials.gov

doi.org

dx.doi.org

  • R. R. Breaker (1997. május 1.). „DNA enzymes”. Nature Biotechnology 15 (5), 427–431. o. DOI:10.1038/nbt0597-427. PMID 9131619.  
  • K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, T. R. Cech (1982. november 1.). „Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena”. Cell 31 (1), 147–157. o. DOI:10.1016/0092-8674(82)90414-7. PMID 6297745.  
  • (1983. december 1.) „The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme”. Cell 35 (3 Pt 2), 849–857. o. DOI:10.1016/0092-8674(83)90117-4. PMID 6197186.  
  • (2020. április 1.) „DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation”. ACS Omega 5 (13), 7059–7064. o. DOI:10.1021/acsomega.9b02645. PMID 32280846. PMC 7143405.  
  • R. R. Breaker, G. F. Joyce (2014. szeptember 1.). „The expanding view of RNA and DNA function”. Chemistry & Biology 21 (9), 1059–1065. o. DOI:10.1016/j.chembiol.2014.07.008. PMID 25237854. PMC 4171699.  
  • S. K. Silverman (2004. október 1.). „Deoxyribozymes: DNA catalysts for bioorganic chemistry”. Organic & Biomolecular Chemistry 2 (19), 2701–2706. o. DOI:10.1039/B411910J. PMID 15455136.  
  • A. Ponce-Salvatierra, P. Boccaletto, J. M. Bujnicki (2021. január 1.). „DNAmoreDB, a database of DNAzymes”. Nucleic Acids Research 49 (D1), D76-D81. o. DOI:10.1093/nar/gkaa867. PMID 33053178. PMC 7778931.  
  • S. K. Silverman (2005). „In vitro selection, characterization, and application of deoxyribozymes that cleave RNA”. Nucleic Acids Research 33 (19), 6151–6163. o. DOI:10.1093/nar/gki930. PMID 16286368. PMC 1283523.  
  • R. R. Breaker, G. F. Joyce (1994. november 28.). „A DNA enzyme that cleaves RNA”. Chemistry & Biology 1 (4), 223–229. o. DOI:10.1016/1074-5521(94)90014-0. PMID 9383394.  
  • T. Lan, K. Furuya, Y. Lu (2010. június 14.). „A highly selective lead sensor based on a classic lead DNAzyme”. Chemical Communications 46 (22), 3896–3898. o. DOI:10.1039/B926910J. PMID 20407665. PMC 3071848.  
  • R. R. Breaker, G. F. Joyce (1995. szeptember 27.). „A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity”. Chemistry & Biology 2 (10), 655–660. o. DOI:10.1016/1074-5521(95)90028-4. PMID 9383471.  
  • D. Faulhammer, M. Famulok (1996. december 1.). „The Ca2+ Ion as a Cofactor for a Novel RNA-Cleaving Deoxyribozyme”. Angewandte Chemie International Edition in English 35 (23–24), 2837–2841. o. DOI:10.1002/anie.199628371. ISSN 1521-3773.  
  • S. W. Santoro, G. F. Joyce (1997. április 1.). „A general purpose RNA-cleaving DNA enzyme”. Proceedings of the National Academy of Sciences of the United States of America 94 (9), 4262–4266. o. DOI:10.1073/pnas.94.9.4262. PMID 9113977. PMC 20710.  
  • R. P. Cruz, J. B. Withers, Y. Li (2004. január 1.). „Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme”. Chemistry & Biology 11 (1), 57–67. o. DOI:10.1016/j.chembiol.2003.12.012. PMID 15112995.  
  • Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, François JC (2012. március 1.). „Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage”. Biochemistry 51 (11), 2181–2191. o. DOI:10.1021/bi201532q. PMID 22352843.  
  • J. Li, Y. Lu (2000. október 1.). „A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions”. Journal of the American Chemical Society 122 (42), 10466–10467. o. DOI:10.1021/ja0021316. ISSN 0002-7863.  
  • P. Wu, K. Hwang, T. Lan, Y. Lu (2013. április 1.). „A DNAzyme-gold nanoparticle probe for uranyl ion in living cells”. Journal of the American Chemical Society 135 (14), 5254–5257. o. DOI:10.1021/ja400150v. PMID 23531046. PMC 3644223.  
  • S. F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu (2015. május 1.). „In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing”. Proceedings of the National Academy of Sciences of the United States of America 112 (19), 5903–5908. o. DOI:10.1073/pnas.1420361112. PMID 25918425. PMC 4434688.  
  • A. Ponce-Salvatierra, K. Wawrzyniak-Turek, U. Steuerwald, C. Höbartner, V. Pena (2016. január 1.). „Crystal structure of a DNA catalyst”. Nature 529 (7585), 231–234. o. DOI:10.1038/nature16471. PMID 26735012.  
  • K. Ven, S. Safdar, A. Dillen, J. Lammertyn, D. Spasic (2019. január 1.). „Re-engineering 10-23 core DNA- and MNAzymes for applications at standard room temperature”. Analytical and Bioanalytical Chemistry 411 (1), 205–215. o. DOI:10.1007/s00216-018-1429-4. PMID 30341659.  
  • D. J. Chinnapen, D. Sen (2004. január 1.). „A deoxyribozyme that harnesses light to repair thymine dimers in DNA”. Proceedings of the National Academy of Sciences of the United States of America 101 (1), 65–69. o. DOI:10.1073/pnas.0305943101. PMID 14691255. PMC 314139.  
  • G. F. Joyce (2004). „Directed evolution of nucleic acid enzymes”. Annual Review of Biochemistry 73 (1), 791–836. o. DOI:10.1146/annurev.biochem.73.011303.073717. PMID 15189159.  
  • S. K. Silverman (2008. augusztus 1.). „Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects”. Chemical Communications (30), 3467–3485. o. DOI:10.1039/B807292M. PMID 18654692.  
  • F. Spill, Z. B. Weinstein, A. Irani Shemirani, N. Ho, D. Desai, M. H. Zaman (2016. október 1.). „Controlling uncertainty in aptamer selection”. Proceedings of the National Academy of Sciences of the United States of America 113 (43), 12076–12081. o. DOI:10.1073/pnas.1605086113. PMID 27790993. PMC 5087011.  
  • R. Gysbers, K. Tram, J. Gu, Y. Li (2015. június 1.). „Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence”. Scientific Reports 5, 11405. o. DOI:10.1038/srep11405. PMID 26091540. PMC 4473686.  
  • N. Paul, G. Springsteen, G. F. Joyce (2006. március 1.). „Conversion of a ribozyme to a deoxyribozyme through in vitro evolution”. Chemistry & Biology 13 (3), 329–338. o. DOI:10.1016/j.chembiol.2006.01.007. PMID 16638538.  
  • (2012. május 1.) „Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site”. Molecular Biotechnology 51 (1), 27–36. o. DOI:10.1007/s12033-011-9437-z. PMID 21744034.  
  • (2015. szeptember 1.) „Potent Intracellular Knock-Down of Influenza A Virus M2 Gene Transcript by DNAzymes Considerably Reduces Viral Replication in Host Cells”. Molecular Biotechnology 57 (9), 836–845. o. DOI:10.1007/s12033-015-9876-z. PMID 26021603.  
  • (2013. október 1.) „Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication”. Nucleic Acid Therapeutics 23 (5), 355–362. o. DOI:10.1089/nat.2013.0432. PMID 23971908.  
  • (2017. február 1.) „DNAzymes Dz13 target the c-jun possess antiviral activity against influenza A viruses”. Microbial Pathogenesis 103, 155–161. o. DOI:10.1016/j.micpath.2016.12.024. PMID 28039102.  
  • (2018. április 1.) „The emerging influenza virus threat: status and new prospects for its therapy and control”. Archives of Virology 163 (4), 831–844. o. DOI:10.1007/s00705-018-3708-y. PMID 29322273. PMC 7087104.  
  • (2018. december 1.) „Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections”. Journal of Clinical Medicine 8 (1), 6. o. DOI:10.3390/jcm8010006. PMID 30577479. PMC 6351902.  
  • (2003. október 1.) „RNA cleaving '10-23' DNAzymes with enhanced stability and activity”. Nucleic Acids Research 31 (20), 5982–5992. o. DOI:10.1093/nar/gkg791. PMID 14530446. PMC 219472.  
  • (2008. július 1.) „Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication”. The Journal of General Virology 89 (Pt 7), 1579–1586. o. DOI:10.1099/vir.0.83650-0. PMID 18559927.  
  • (2015. május 1.) „Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme”. The New England Journal of Medicine 372 (21), 1987–1995. o. DOI:10.1056/nejmoa1411776. PMID 25981191.  
  • J. Liu, Y. Lu (2004). „Optimization of a Pb2+-Directed Gold Nanoparticle/DNAzyme Assembly and Its Application as a Colorimetric Biosensor for Pb2+”. Chem. Mater. 16 (17), 3231–38. o. DOI:10.1021/cm049453j.  
  • H. Wei, B. Li, J. Li, S. Dong, E. Wang (2008. március 1.). „DNAzyme-based colorimetric sensing of lead (Pb(2+)) using unmodified gold nanoparticle probes”. Nanotechnology 19 (9), 095501. o. DOI:10.1088/0957-4484/19/9/095501. PMID 21817668.  
  • A. Montserrat Pagès, S. Safdar, K. Ven, J. Lammertyn, D. Spasic (2021. augusztus 1.). „DNA-only bioassay for simultaneous detection of proteins and nucleic acids”. Analytical and Bioanalytical Chemistry 413 (20), 4925–4937. o. DOI:10.1007/s00216-021-03458-6. PMID 34184101. PMC 8238030.  
  • G. Roelfes, B. L. Feringa (2005. május 1.). „DNA-based asymmetric catalysis”. Angewandte Chemie 44 (21), 3230–3232. o. DOI:10.1002/anie.200500298. PMID 15844122.  
  • P. Travascio, Y. Li, D. Sen (1998. szeptember 1.). „DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex”. Chemistry & Biology 5 (9), 505–517. o. DOI:10.1016/s1074-5521(98)90006-0. PMID 9751647.  
  • (2016. január 1.) „Nucleoapzymes: Hemin/G-Quadruplex DNAzyme-Aptamer Binding Site Conjugates with Superior Enzyme-like Catalytic Functions”. Journal of the American Chemical Society 138 (1), 164–172. o. DOI:10.1021/jacs.5b09457. PMID 26652164.  
  • S. Wintermans, J. F. Keijzer, M. Dros, H. Zullhof, B. Albada (2021. szeptember 8.). „Aptamer‐Assisted Bioconjugation of Tyrosine Derivatives with hemin/G‐quadruplex (hGQ) DNAzyme Nucleoapzyme Nanostructures”. ChemCatChem 13 (21), 4618–4624. o. DOI:10.1002/cctc.202101070. ISSN 1867-3880.  
  • J. F. Keijzer, B. Albada (2020. október 1.). „Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures”. Bioconjugate Chemistry 31 (10), 2283–2287. o. DOI:10.1021/acs.bioconjchem.0c00422. PMID 32909740. PMC 7581286.  
  • (2019) „DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface”. Theranostics 9 (7), 1993–2002. o. DOI:10.7150/thno.31943. PMID 31037152. PMC 6485291.  
  • A. García-Fernández, G. Roelfes.szerk.: A. Sigel, H. Sigel, R. K. Sigel: Chapter 9. Enantioselective catalysis at the DNA Scaffold, Interplay between Metal Ions and Nucleic Acids, Metal Ions in Life Sciences. Springer, 249–268. o.. DOI: 10.1007/978-94-007-2172-2_9 (2012). ISBN 978-94-007-2171-5 
  • Y. Ito, E. Fukusaki (2004). „DNA as a 'Nanomaterial'”. Journal of Molecular Catalysis B: Enzymatic 28 (4–6), 155–166. o. DOI:10.1016/j.molcatb.2004.01.016.  

kaaltv.com

kuleuven.be

lirias.kuleuven.be

nih.gov

pubmed.ncbi.nlm.nih.gov

  • R. R. Breaker (1997. május 1.). „DNA enzymes”. Nature Biotechnology 15 (5), 427–431. o. DOI:10.1038/nbt0597-427. PMID 9131619.  
  • K. Kruger, P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling, T. R. Cech (1982. november 1.). „Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena”. Cell 31 (1), 147–157. o. DOI:10.1016/0092-8674(82)90414-7. PMID 6297745.  
  • (1983. december 1.) „The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme”. Cell 35 (3 Pt 2), 849–857. o. DOI:10.1016/0092-8674(83)90117-4. PMID 6197186.  
  • (2020. április 1.) „DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation”. ACS Omega 5 (13), 7059–7064. o. DOI:10.1021/acsomega.9b02645. PMID 32280846. PMC 7143405.  
  • R. R. Breaker, G. F. Joyce (2014. szeptember 1.). „The expanding view of RNA and DNA function”. Chemistry & Biology 21 (9), 1059–1065. o. DOI:10.1016/j.chembiol.2014.07.008. PMID 25237854. PMC 4171699.  
  • S. K. Silverman (2004. október 1.). „Deoxyribozymes: DNA catalysts for bioorganic chemistry”. Organic & Biomolecular Chemistry 2 (19), 2701–2706. o. DOI:10.1039/B411910J. PMID 15455136.  
  • A. Ponce-Salvatierra, P. Boccaletto, J. M. Bujnicki (2021. január 1.). „DNAmoreDB, a database of DNAzymes”. Nucleic Acids Research 49 (D1), D76-D81. o. DOI:10.1093/nar/gkaa867. PMID 33053178. PMC 7778931.  
  • S. K. Silverman (2005). „In vitro selection, characterization, and application of deoxyribozymes that cleave RNA”. Nucleic Acids Research 33 (19), 6151–6163. o. DOI:10.1093/nar/gki930. PMID 16286368. PMC 1283523.  
  • R. R. Breaker, G. F. Joyce (1994. november 28.). „A DNA enzyme that cleaves RNA”. Chemistry & Biology 1 (4), 223–229. o. DOI:10.1016/1074-5521(94)90014-0. PMID 9383394.  
  • T. Lan, K. Furuya, Y. Lu (2010. június 14.). „A highly selective lead sensor based on a classic lead DNAzyme”. Chemical Communications 46 (22), 3896–3898. o. DOI:10.1039/B926910J. PMID 20407665. PMC 3071848.  
  • R. R. Breaker, G. F. Joyce (1995. szeptember 27.). „A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity”. Chemistry & Biology 2 (10), 655–660. o. DOI:10.1016/1074-5521(95)90028-4. PMID 9383471.  
  • S. W. Santoro, G. F. Joyce (1997. április 1.). „A general purpose RNA-cleaving DNA enzyme”. Proceedings of the National Academy of Sciences of the United States of America 94 (9), 4262–4266. o. DOI:10.1073/pnas.94.9.4262. PMID 9113977. PMC 20710.  
  • R. P. Cruz, J. B. Withers, Y. Li (2004. január 1.). „Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme”. Chemistry & Biology 11 (1), 57–67. o. DOI:10.1016/j.chembiol.2003.12.012. PMID 15112995.  
  • Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, François JC (2012. március 1.). „Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage”. Biochemistry 51 (11), 2181–2191. o. DOI:10.1021/bi201532q. PMID 22352843.  
  • P. Wu, K. Hwang, T. Lan, Y. Lu (2013. április 1.). „A DNAzyme-gold nanoparticle probe for uranyl ion in living cells”. Journal of the American Chemical Society 135 (14), 5254–5257. o. DOI:10.1021/ja400150v. PMID 23531046. PMC 3644223.  
  • S. F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu (2015. május 1.). „In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing”. Proceedings of the National Academy of Sciences of the United States of America 112 (19), 5903–5908. o. DOI:10.1073/pnas.1420361112. PMID 25918425. PMC 4434688.  
  • A. Ponce-Salvatierra, K. Wawrzyniak-Turek, U. Steuerwald, C. Höbartner, V. Pena (2016. január 1.). „Crystal structure of a DNA catalyst”. Nature 529 (7585), 231–234. o. DOI:10.1038/nature16471. PMID 26735012.  
  • K. Ven, S. Safdar, A. Dillen, J. Lammertyn, D. Spasic (2019. január 1.). „Re-engineering 10-23 core DNA- and MNAzymes for applications at standard room temperature”. Analytical and Bioanalytical Chemistry 411 (1), 205–215. o. DOI:10.1007/s00216-018-1429-4. PMID 30341659.  
  • D. J. Chinnapen, D. Sen (2004. január 1.). „A deoxyribozyme that harnesses light to repair thymine dimers in DNA”. Proceedings of the National Academy of Sciences of the United States of America 101 (1), 65–69. o. DOI:10.1073/pnas.0305943101. PMID 14691255. PMC 314139.  
  • G. F. Joyce (2004). „Directed evolution of nucleic acid enzymes”. Annual Review of Biochemistry 73 (1), 791–836. o. DOI:10.1146/annurev.biochem.73.011303.073717. PMID 15189159.  
  • S. K. Silverman (2008. augusztus 1.). „Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects”. Chemical Communications (30), 3467–3485. o. DOI:10.1039/B807292M. PMID 18654692.  
  • F. Spill, Z. B. Weinstein, A. Irani Shemirani, N. Ho, D. Desai, M. H. Zaman (2016. október 1.). „Controlling uncertainty in aptamer selection”. Proceedings of the National Academy of Sciences of the United States of America 113 (43), 12076–12081. o. DOI:10.1073/pnas.1605086113. PMID 27790993. PMC 5087011.  
  • R. Gysbers, K. Tram, J. Gu, Y. Li (2015. június 1.). „Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence”. Scientific Reports 5, 11405. o. DOI:10.1038/srep11405. PMID 26091540. PMC 4473686.  
  • N. Paul, G. Springsteen, G. F. Joyce (2006. március 1.). „Conversion of a ribozyme to a deoxyribozyme through in vitro evolution”. Chemistry & Biology 13 (3), 329–338. o. DOI:10.1016/j.chembiol.2006.01.007. PMID 16638538.  
  • (2012. május 1.) „Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site”. Molecular Biotechnology 51 (1), 27–36. o. DOI:10.1007/s12033-011-9437-z. PMID 21744034.  
  • (2015. szeptember 1.) „Potent Intracellular Knock-Down of Influenza A Virus M2 Gene Transcript by DNAzymes Considerably Reduces Viral Replication in Host Cells”. Molecular Biotechnology 57 (9), 836–845. o. DOI:10.1007/s12033-015-9876-z. PMID 26021603.  
  • (2013. október 1.) „Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication”. Nucleic Acid Therapeutics 23 (5), 355–362. o. DOI:10.1089/nat.2013.0432. PMID 23971908.  
  • (2017. február 1.) „DNAzymes Dz13 target the c-jun possess antiviral activity against influenza A viruses”. Microbial Pathogenesis 103, 155–161. o. DOI:10.1016/j.micpath.2016.12.024. PMID 28039102.  
  • (2018. április 1.) „The emerging influenza virus threat: status and new prospects for its therapy and control”. Archives of Virology 163 (4), 831–844. o. DOI:10.1007/s00705-018-3708-y. PMID 29322273. PMC 7087104.  
  • (2018. december 1.) „Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections”. Journal of Clinical Medicine 8 (1), 6. o. DOI:10.3390/jcm8010006. PMID 30577479. PMC 6351902.  
  • (2003. október 1.) „RNA cleaving '10-23' DNAzymes with enhanced stability and activity”. Nucleic Acids Research 31 (20), 5982–5992. o. DOI:10.1093/nar/gkg791. PMID 14530446. PMC 219472.  
  • (2008. július 1.) „Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication”. The Journal of General Virology 89 (Pt 7), 1579–1586. o. DOI:10.1099/vir.0.83650-0. PMID 18559927.  
  • (2015. május 1.) „Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme”. The New England Journal of Medicine 372 (21), 1987–1995. o. DOI:10.1056/nejmoa1411776. PMID 25981191.  
  • H. Wei, B. Li, J. Li, S. Dong, E. Wang (2008. március 1.). „DNAzyme-based colorimetric sensing of lead (Pb(2+)) using unmodified gold nanoparticle probes”. Nanotechnology 19 (9), 095501. o. DOI:10.1088/0957-4484/19/9/095501. PMID 21817668.  
  • A. Montserrat Pagès, S. Safdar, K. Ven, J. Lammertyn, D. Spasic (2021. augusztus 1.). „DNA-only bioassay for simultaneous detection of proteins and nucleic acids”. Analytical and Bioanalytical Chemistry 413 (20), 4925–4937. o. DOI:10.1007/s00216-021-03458-6. PMID 34184101. PMC 8238030.  
  • G. Roelfes, B. L. Feringa (2005. május 1.). „DNA-based asymmetric catalysis”. Angewandte Chemie 44 (21), 3230–3232. o. DOI:10.1002/anie.200500298. PMID 15844122.  
  • P. Travascio, Y. Li, D. Sen (1998. szeptember 1.). „DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex”. Chemistry & Biology 5 (9), 505–517. o. DOI:10.1016/s1074-5521(98)90006-0. PMID 9751647.  
  • (2016. január 1.) „Nucleoapzymes: Hemin/G-Quadruplex DNAzyme-Aptamer Binding Site Conjugates with Superior Enzyme-like Catalytic Functions”. Journal of the American Chemical Society 138 (1), 164–172. o. DOI:10.1021/jacs.5b09457. PMID 26652164.  
  • J. F. Keijzer, B. Albada (2020. október 1.). „Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures”. Bioconjugate Chemistry 31 (10), 2283–2287. o. DOI:10.1021/acs.bioconjchem.0c00422. PMID 32909740. PMC 7581286.  
  • (2019) „DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface”. Theranostics 9 (7), 1993–2002. o. DOI:10.7150/thno.31943. PMID 31037152. PMC 6485291.  

ncbi.nlm.nih.gov

  • (2020. április 1.) „DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation”. ACS Omega 5 (13), 7059–7064. o. DOI:10.1021/acsomega.9b02645. PMID 32280846. PMC 7143405.  
  • R. R. Breaker, G. F. Joyce (2014. szeptember 1.). „The expanding view of RNA and DNA function”. Chemistry & Biology 21 (9), 1059–1065. o. DOI:10.1016/j.chembiol.2014.07.008. PMID 25237854. PMC 4171699.  
  • A. Ponce-Salvatierra, P. Boccaletto, J. M. Bujnicki (2021. január 1.). „DNAmoreDB, a database of DNAzymes”. Nucleic Acids Research 49 (D1), D76-D81. o. DOI:10.1093/nar/gkaa867. PMID 33053178. PMC 7778931.  
  • S. K. Silverman (2005). „In vitro selection, characterization, and application of deoxyribozymes that cleave RNA”. Nucleic Acids Research 33 (19), 6151–6163. o. DOI:10.1093/nar/gki930. PMID 16286368. PMC 1283523.  
  • T. Lan, K. Furuya, Y. Lu (2010. június 14.). „A highly selective lead sensor based on a classic lead DNAzyme”. Chemical Communications 46 (22), 3896–3898. o. DOI:10.1039/B926910J. PMID 20407665. PMC 3071848.  
  • S. W. Santoro, G. F. Joyce (1997. április 1.). „A general purpose RNA-cleaving DNA enzyme”. Proceedings of the National Academy of Sciences of the United States of America 94 (9), 4262–4266. o. DOI:10.1073/pnas.94.9.4262. PMID 9113977. PMC 20710.  
  • P. Wu, K. Hwang, T. Lan, Y. Lu (2013. április 1.). „A DNAzyme-gold nanoparticle probe for uranyl ion in living cells”. Journal of the American Chemical Society 135 (14), 5254–5257. o. DOI:10.1021/ja400150v. PMID 23531046. PMC 3644223.  
  • S. F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu (2015. május 1.). „In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing”. Proceedings of the National Academy of Sciences of the United States of America 112 (19), 5903–5908. o. DOI:10.1073/pnas.1420361112. PMID 25918425. PMC 4434688.  
  • D. J. Chinnapen, D. Sen (2004. január 1.). „A deoxyribozyme that harnesses light to repair thymine dimers in DNA”. Proceedings of the National Academy of Sciences of the United States of America 101 (1), 65–69. o. DOI:10.1073/pnas.0305943101. PMID 14691255. PMC 314139.  
  • F. Spill, Z. B. Weinstein, A. Irani Shemirani, N. Ho, D. Desai, M. H. Zaman (2016. október 1.). „Controlling uncertainty in aptamer selection”. Proceedings of the National Academy of Sciences of the United States of America 113 (43), 12076–12081. o. DOI:10.1073/pnas.1605086113. PMID 27790993. PMC 5087011.  
  • R. Gysbers, K. Tram, J. Gu, Y. Li (2015. június 1.). „Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence”. Scientific Reports 5, 11405. o. DOI:10.1038/srep11405. PMID 26091540. PMC 4473686.  
  • (2018. április 1.) „The emerging influenza virus threat: status and new prospects for its therapy and control”. Archives of Virology 163 (4), 831–844. o. DOI:10.1007/s00705-018-3708-y. PMID 29322273. PMC 7087104.  
  • (2018. december 1.) „Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections”. Journal of Clinical Medicine 8 (1), 6. o. DOI:10.3390/jcm8010006. PMID 30577479. PMC 6351902.  
  • (2003. október 1.) „RNA cleaving '10-23' DNAzymes with enhanced stability and activity”. Nucleic Acids Research 31 (20), 5982–5992. o. DOI:10.1093/nar/gkg791. PMID 14530446. PMC 219472.  
  • A. Montserrat Pagès, S. Safdar, K. Ven, J. Lammertyn, D. Spasic (2021. augusztus 1.). „DNA-only bioassay for simultaneous detection of proteins and nucleic acids”. Analytical and Bioanalytical Chemistry 413 (20), 4925–4937. o. DOI:10.1007/s00216-021-03458-6. PMID 34184101. PMC 8238030.  
  • J. F. Keijzer, B. Albada (2020. október 1.). „Site-Specific and Trigger-Activated Modification of Proteins by Means of Catalytic Hemin/G-quadruplex DNAzyme Nanostructures”. Bioconjugate Chemistry 31 (10), 2283–2287. o. DOI:10.1021/acs.bioconjchem.0c00422. PMID 32909740. PMC 7581286.  
  • (2019) „DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface”. Theranostics 9 (7), 1993–2002. o. DOI:10.7150/thno.31943. PMID 31037152. PMC 6485291.  

ou.dk

rug.nl

pure.rug.nl

uni-goettingen.de

resolver.sub.uni-goettingen.de

web.archive.org

webmedcentral.com

worldcat.org

  • D. Faulhammer, M. Famulok (1996. december 1.). „The Ca2+ Ion as a Cofactor for a Novel RNA-Cleaving Deoxyribozyme”. Angewandte Chemie International Edition in English 35 (23–24), 2837–2841. o. DOI:10.1002/anie.199628371. ISSN 1521-3773.  
  • J. Li, Y. Lu (2000. október 1.). „A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions”. Journal of the American Chemical Society 122 (42), 10466–10467. o. DOI:10.1021/ja0021316. ISSN 0002-7863.  
  • S. Wintermans, J. F. Keijzer, M. Dros, H. Zullhof, B. Albada (2021. szeptember 8.). „Aptamer‐Assisted Bioconjugation of Tyrosine Derivatives with hemin/G‐quadruplex (hGQ) DNAzyme Nucleoapzyme Nanostructures”. ChemCatChem 13 (21), 4618–4624. o. DOI:10.1002/cctc.202101070. ISSN 1867-3880.