Foszfatidilinozit-4,5-biszfoszfát (Hungarian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Foszfatidilinozit-4,5-biszfoszfát" in Hungarian language version.

refsWebsite
Global rank Hungarian rank
4th place
11th place
2nd place
8th place
5th place
22nd place
6th place
14th place
low place
low place
1st place
1st place

archive.org

doi.org

dx.doi.org

  • van den Bogaart, G (2011. október 23.). „Membrane protein sequestering by ionic protein-lipid interactions.”. Nature 479 (7374), 552–5. o. DOI:10.1038/nature10545. PMID 22020284. PMC 3409895.  
  • Petersen, EN (2016. december 15.). „Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D.”. Nature Communications 7, 13873. o. DOI:10.1038/ncomms13873. PMID 27976674. PMC 5171650.  
  • Yuan, Z (2022. szeptember 14.). „Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture”. Communications Biology 5 (1), 958. o. DOI:10.1038/s42003-022-03841-8. PMID 36104427. PMC 9472185.  
  • Robinson, CV (2019. szeptember 1.). „Tools for Understanding Nanoscale Lipid Regulation of Ion Channels.”. Trends in Biochemical Sciences 44 (9), 795–806. o. DOI:10.1016/j.tibs.2019.04.001. PMID 31060927. PMC 6729126.  
  • (1997. november 1.) „A new pathway for synthesis of phosphatydilinositol-4,5-bisphosphate”. Nature 390 (6656), 192–6. o. DOI:10.1038/36621. PMID 9367159.  
  • Tanaka T, Iwawaki D, Sakamoto M, Takai Y, Morishige J, Murakami K, Satouchi K (2003. április 1.). „Mechanisms of accumulation of arachidonate in phosphatidylinositol in yellowtail. A comparative study of acylation systems of phospholipids in rat and the fish species Seriola quinqueradiata”. Eur J Biochem 270 (7), 1466–73. o. DOI:10.1046/j.1432-1033.2003.03512.x. PMID 12654002.  
  • Bulley SJ, Clarke JH, Droubi A, Giudici ML, Irvine RF (2015). „Exploring phosphatidylinositol 5-phosphate 4-kinase function”. Adv Biol Regul 57, 193–202. o. DOI:10.1016/j.jbior.2014.09.007. PMID 25311266. PMC 4359101.  
  • Lewis AE, Sommer L, Arntzen MØ, Strahm Y, Morrice NA, Divecha N, D'Santos CS (2011). „Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction”. Mol Cell Proteomics 10 (2), M110.003376. o. DOI:10.1074/mcp.M110.003376. PMID 21048195. PMC 3033679.  
  • Sun, Hui (1999. november 19.). „Gelsolin, a Multifunctional Actin Regulatory Protein”. The Journal of Biological Chemistry 274 (47), 33179–82. o. DOI:10.1074/jbc.274.47.33179. PMID 10559185.  
  • Eberhard, David A, et al (1990). „Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP”. Biochemical Journal 268 (1), 15–25. o. DOI:10.1042/bj2680015. PMID 2160809. PMC 1131385.  
  • Hay, Jesse C, Thomas M (1993). „Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion”. Nature 366 (6455), 572–575. o. DOI:10.1038/366572a0. PMID 8255295.  
  • Hay, Jesse C, et al. (1995). „ATP-dependent inositide phosphorylation required for Ca2+-activated secretion”. Nature 374 (6518), 173–177. o. DOI:10.1038/374173a0. PMID 7877690.  
  • Holz RW, et al (2000). „A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4, 5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4, 5-P2 as being important in exocytosis”. J. Biol. Chem. 275 (23), 17878–17885. o. DOI:10.1074/jbc.M000925200. PMID 10747966.  
  • Gong LW, et al (2005). „Phosphatidylinositol phosphate kinase type Iγ regulates dynamics of large dense-core vesicle fusion.”. PNAS 102 (14), 5204–5209. o. DOI:10.1073/pnas.0501412102. PMID 15793002. PMC 555604.  
  • Di Paolo G, et al (2004). „Impaired PtdIns (4, 5) P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking”. Nature 431 (7007), 415–422. o. DOI:10.1038/nature02896. PMID 15386003.  
  • Waselle L, et al (2005). „Role of phosphoinositide signaling in the control of insulin exocytosis.”. Molecular Endocrinology 19 (12), 3097–3106. o. DOI:10.1210/me.2004-0530. PMID 16081518.  
  • Milosevic I, et al (2005). „Plasmalemmal phosphatidylinositol-4, 5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells.”. Journal of Neuroscience 25 (10), 2557–2565. o. DOI:10.1523/JNEUROSCI.3761-04.2005. PMID 15758165. PMC 6725155.  
  • Grishanin RN et al (2004). „CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP 2 binding protein”. Neuron 43 (4), 551–562. o. DOI:10.1016/j.neuron.2004.07.028. PMID 15312653.  
  • Kabachinski G, et al (2014). „CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis”. Molecular Biology of the Cell 25 (4), 508–521. o. DOI:10.1091/mbc.E12-11-0829. PMID 24356451. PMC 3923642.  
  • Loewen CA, et al (2006). „C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo”. Molecular Biology of the Cell 17 (12), 5211–5226. o. DOI:10.1091/mbc.E06-07-0622. PMID 16987956. PMC 1679685.  
  • Rusten, Tor Erik (2006. április 1.). „Analyzing phosphoinositides and their interacting proteins”. Nature Methods 3 (4), 251–258. o. DOI:10.1038/nmeth867. ISSN 1548-7091. PMID 16554828.  
  • Won DH, et al (2006). „PI (3, 4, 5) P3 and PI (4, 5) P2 lipids target proteins with polybasic clusters to the plasma membrane.”. Science 314 (5804), 1458–1461. o. DOI:10.1126/science.1134389. PMID 17095657. PMC 3579512.  
  • Hammond G et al (2012). „PI4P and PI (4, 5) P2 are essential but independent lipid determinants of membrane identity”. Science 337 (6095), 727–730. o. DOI:10.1126/science.1222483. PMID 22722250. PMC 3646512.  
  • Soom, M (2001). „Multiple PtdIns(4,5)P2 binding sites in Kir2.1 inwardly rectifying potassium channels”. FEBS Letters 490 (1–2), 49–53. o. DOI:10.1016/S0014-5793(01)02136-6. PMID 11172809.  
  • Hansen, SB (2011. augusztus 28.). „Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2.”. Nature 477 (7365), 495–8. o. DOI:10.1038/nature10370. PMID 21874019. PMC 3324908.  
  • Yen, Hsin-Yung (2018. július 11.). „PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling”. Nature 559 (7714), 423–427. o. DOI:10.1038/s41586-018-0325-6. ISSN 0028-0836. PMID 29995853. PMC 6059376.  
  • Yang, Pei (2016. május 24.). „Effect of Lipid Composition on Membrane Orientation of the G protein-coupled Receptor Kinase 2-Gβ1γ2 Complex”. Biochemistry 55 (20), 2841–2848. o. DOI:10.1021/acs.biochem.6b00354. ISSN 0006-2960. PMID 27088923. PMC 4886744.  
  • Hilgemann, D. W. (2001). „The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters”. Science's STKE 2001 (111), 19re–19. o. DOI:10.1126/stke.2001.111.re19. PMID 11734659.  

nih.gov

pubmed.ncbi.nlm.nih.gov

  • van den Bogaart, G (2011. október 23.). „Membrane protein sequestering by ionic protein-lipid interactions.”. Nature 479 (7374), 552–5. o. DOI:10.1038/nature10545. PMID 22020284. PMC 3409895.  
  • Petersen, EN (2016. december 15.). „Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D.”. Nature Communications 7, 13873. o. DOI:10.1038/ncomms13873. PMID 27976674. PMC 5171650.  
  • Yuan, Z (2022. szeptember 14.). „Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture”. Communications Biology 5 (1), 958. o. DOI:10.1038/s42003-022-03841-8. PMID 36104427. PMC 9472185.  
  • Robinson, CV (2019. szeptember 1.). „Tools for Understanding Nanoscale Lipid Regulation of Ion Channels.”. Trends in Biochemical Sciences 44 (9), 795–806. o. DOI:10.1016/j.tibs.2019.04.001. PMID 31060927. PMC 6729126.  
  • (1997. november 1.) „A new pathway for synthesis of phosphatydilinositol-4,5-bisphosphate”. Nature 390 (6656), 192–6. o. DOI:10.1038/36621. PMID 9367159.  
  • Tanaka T, Iwawaki D, Sakamoto M, Takai Y, Morishige J, Murakami K, Satouchi K (2003. április 1.). „Mechanisms of accumulation of arachidonate in phosphatidylinositol in yellowtail. A comparative study of acylation systems of phospholipids in rat and the fish species Seriola quinqueradiata”. Eur J Biochem 270 (7), 1466–73. o. DOI:10.1046/j.1432-1033.2003.03512.x. PMID 12654002.  
  • Bulley SJ, Clarke JH, Droubi A, Giudici ML, Irvine RF (2015). „Exploring phosphatidylinositol 5-phosphate 4-kinase function”. Adv Biol Regul 57, 193–202. o. DOI:10.1016/j.jbior.2014.09.007. PMID 25311266. PMC 4359101.  
  • Lewis AE, Sommer L, Arntzen MØ, Strahm Y, Morrice NA, Divecha N, D'Santos CS (2011). „Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction”. Mol Cell Proteomics 10 (2), M110.003376. o. DOI:10.1074/mcp.M110.003376. PMID 21048195. PMC 3033679.  
  • Sun, Hui (1999. november 19.). „Gelsolin, a Multifunctional Actin Regulatory Protein”. The Journal of Biological Chemistry 274 (47), 33179–82. o. DOI:10.1074/jbc.274.47.33179. PMID 10559185.  
  • Eberhard, David A, et al (1990). „Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP”. Biochemical Journal 268 (1), 15–25. o. DOI:10.1042/bj2680015. PMID 2160809. PMC 1131385.  
  • Hay, Jesse C, Thomas M (1993). „Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion”. Nature 366 (6455), 572–575. o. DOI:10.1038/366572a0. PMID 8255295.  
  • Hay, Jesse C, et al. (1995). „ATP-dependent inositide phosphorylation required for Ca2+-activated secretion”. Nature 374 (6518), 173–177. o. DOI:10.1038/374173a0. PMID 7877690.  
  • Holz RW, et al (2000). „A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4, 5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4, 5-P2 as being important in exocytosis”. J. Biol. Chem. 275 (23), 17878–17885. o. DOI:10.1074/jbc.M000925200. PMID 10747966.  
  • Gong LW, et al (2005). „Phosphatidylinositol phosphate kinase type Iγ regulates dynamics of large dense-core vesicle fusion.”. PNAS 102 (14), 5204–5209. o. DOI:10.1073/pnas.0501412102. PMID 15793002. PMC 555604.  
  • Di Paolo G, et al (2004). „Impaired PtdIns (4, 5) P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking”. Nature 431 (7007), 415–422. o. DOI:10.1038/nature02896. PMID 15386003.  
  • Waselle L, et al (2005). „Role of phosphoinositide signaling in the control of insulin exocytosis.”. Molecular Endocrinology 19 (12), 3097–3106. o. DOI:10.1210/me.2004-0530. PMID 16081518.  
  • Milosevic I, et al (2005). „Plasmalemmal phosphatidylinositol-4, 5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells.”. Journal of Neuroscience 25 (10), 2557–2565. o. DOI:10.1523/JNEUROSCI.3761-04.2005. PMID 15758165. PMC 6725155.  
  • Grishanin RN et al (2004). „CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP 2 binding protein”. Neuron 43 (4), 551–562. o. DOI:10.1016/j.neuron.2004.07.028. PMID 15312653.  
  • Kabachinski G, et al (2014). „CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis”. Molecular Biology of the Cell 25 (4), 508–521. o. DOI:10.1091/mbc.E12-11-0829. PMID 24356451. PMC 3923642.  
  • Loewen CA, et al (2006). „C2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo”. Molecular Biology of the Cell 17 (12), 5211–5226. o. DOI:10.1091/mbc.E06-07-0622. PMID 16987956. PMC 1679685.  
  • Rusten, Tor Erik (2006. április 1.). „Analyzing phosphoinositides and their interacting proteins”. Nature Methods 3 (4), 251–258. o. DOI:10.1038/nmeth867. ISSN 1548-7091. PMID 16554828.  
  • Won DH, et al (2006). „PI (3, 4, 5) P3 and PI (4, 5) P2 lipids target proteins with polybasic clusters to the plasma membrane.”. Science 314 (5804), 1458–1461. o. DOI:10.1126/science.1134389. PMID 17095657. PMC 3579512.  
  • Hammond G et al (2012). „PI4P and PI (4, 5) P2 are essential but independent lipid determinants of membrane identity”. Science 337 (6095), 727–730. o. DOI:10.1126/science.1222483. PMID 22722250. PMC 3646512.  
  • Soom, M (2001). „Multiple PtdIns(4,5)P2 binding sites in Kir2.1 inwardly rectifying potassium channels”. FEBS Letters 490 (1–2), 49–53. o. DOI:10.1016/S0014-5793(01)02136-6. PMID 11172809.  
  • Hansen, SB (2011. augusztus 28.). „Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2.”. Nature 477 (7365), 495–8. o. DOI:10.1038/nature10370. PMID 21874019. PMC 3324908.  
  • Yen, Hsin-Yung (2018. július 11.). „PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling”. Nature 559 (7714), 423–427. o. DOI:10.1038/s41586-018-0325-6. ISSN 0028-0836. PMID 29995853. PMC 6059376.  
  • Yang, Pei (2016. május 24.). „Effect of Lipid Composition on Membrane Orientation of the G protein-coupled Receptor Kinase 2-Gβ1γ2 Complex”. Biochemistry 55 (20), 2841–2848. o. DOI:10.1021/acs.biochem.6b00354. ISSN 0006-2960. PMID 27088923. PMC 4886744.  
  • Hilgemann, D. W. (2001). „The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters”. Science's STKE 2001 (111), 19re–19. o. DOI:10.1126/stke.2001.111.re19. PMID 11734659.  

ncbi.nlm.nih.gov

qiagen.com

www1.qiagen.com

web.archive.org

worldcat.org