G-kvadruplex (Hungarian Wikipedia)

Analysis of information sources in references of the Wikipedia article "G-kvadruplex" in Hungarian language version.

refsWebsite
Global rank Hungarian rank
2nd place
8th place
4th place
11th place
6th place
14th place
485th place
914th place
1,031st place
low place
670th place
2,204th place
1,306th place
3,881st place
5,061st place
6,043rd place
5,893rd place
low place
5th place
22nd place
610th place
1,534th place
low place
low place
low place
low place

archive.org

archives-ouvertes.fr

hal.archives-ouvertes.fr

biorxiv.org

cam.ac.uk

repository.cam.ac.uk

doi.org

dx.doi.org

  • J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian (2010. július 1.). „G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae”. PLOS Computational Biology 6 (7), e1000861. o. DOI:10.1371/journal.pcbi.1000861. PMID 20676380.  
  • Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (2017. március 1.). „A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1”. Journal of Visualized Experiments 121 (121). DOI:10.3791/55496. PMID 28362374.  
  • E. Largy, J. Mergny, V. Gabelica.szerk.: S. Astrid, S. Helmut, K. O. Roland: Chapter 7. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability, The Alkali Metal Ions: Their Role in Life, Metal Ions in Life Sciences. Springer, 203–258. o.. DOI: 10.1007/978-3-319-21756-7_7 (2016) 
  • W. I. Sundquist, A. Klug (1989. december 1.). „Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops”. Nature 342 (6251), 825–829. o. DOI:10.1038/342825a0. PMID 2601741.  
  • Sen D, Gilbert W (1988. július 1.). „Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis”. Nature 334 (6180), 364–366. o. DOI:10.1038/334364a0. PMID 3393228.  
  • Rawal P, Kummarasetti VB, Ravindran R, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. augusztus 6.). „Genome-wide Prediction of G4 DNA as Regulatory Motifs: Role in Escherichia Coli Global Regulation”. Genome Research 16 (5), 644‐655. o. DOI:10.1101/gr.4508806. PMID 16651665.  
  • S. Borman (2007. május 28.). „Ascent of quadruplexes nucleic acid structures become promising drug targets”. Chemical and Engineering News 85 (22), 12–17. o. DOI:10.1021/cen-v085n009.p012a.  
  • Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008). „Genome-wide Computational and Expression Analyses Reveal G-quadruplex DNA Motifs as Conserved Cis-Regulatory Elements in Human and Related Species”. Journal of Medicinal Chemistry 51 (18), 5641‐5649. o. DOI:10.1021/jm800448a. PMID 18767830.  
  • H. Han, L. H. Hurley (2000. április 1.). „G-quadruplex DNA: a potential target for anti-cancer drug design”. Trends in Pharmacological Sciences 21 (4), 136–142. o. DOI:10.1016/s0165-6147(00)01457-7. PMID 10740289.  
  • M. L. Bochman, K. Paeschke, V. A. Zakian (2012. november 1.). „DNA secondary structures: stability and function of G-quadruplex structures”. Nature Reviews. Genetics 13 (11), 770–80. o. DOI:10.1038/nrg3296. PMID 23032257.  
  • Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008. augusztus 6.). „QuadBase: Genome-Wide Database of G4 DNA--occurrence and Conservation in Human, Chimpanzee, Mouse and Rat Promoters and 146 Microbes”. Nucleic Acids Research 36 (Database), D381‐D385. o. DOI:10.1093/nar/gkm781. PMID 17962308.  
  • P. Dhapola, S. Chowdhury (2016. július 1.). „QuadBase2: Web Server for Multiplexed Guanine Quadruplex Mining and Visualization”. Nucleic Acids Research 44 (W1), W277‐W283. o. DOI:10.1093/nar/gkw425. PMID 27185890.  
  • D. Rhodes, H. J. Lipps (2015. október 1.). „G-quadruplexes and their regulatory roles in biology”. Nucleic Acids Research 43 (18), 8627–37. o. DOI:10.1093/nar/gkv862. PMID 26350216.  
  • S. Borman (2009. november 1.). „Promoter quadruplexes folded DNA structures in gene-activation sites may be useful cancer drug targets”. Chemical and Engineering News 87 (44), 28–30. o. DOI:10.1021/cen-v087n044.p028.  
  • Gellert M, Lipsett MN, Davies DR (1962. december 1.). „Helix formation by guanylic acid”. Proceedings of the National Academy of Sciences of the United States of America 48 (12), 2013–2018. o. DOI:10.1073/pnas.48.12.2013. PMID 13947099.  
  • Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987. december 1.). „Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs”. Cell 51 (6), 899–908. o. DOI:10.1016/0092-8674(87)90577-0. PMID 3690664.  
  • (2010. október 10.) „Small-molecule-mediated G-quadruplex isolation from human cells”. Nature Chemistry 2 (12), 1095–1098. o. DOI:10.1038/nchem.842. PMID 21107376.  
  • (2012. február 5.) „Small-molecule–induced DNA damage identifies alternative DNA structures in human genes”. Nature Chemical Biology 8 (3), 301–310. o. DOI:10.1038/nchembio.780. PMID 22306580.  
  • T. Simonsson (2001. április 1.). „G-quadruplex DNA structures--variations on a theme”. Biological Chemistry 382 (4), 621–8. o. DOI:10.1515/BC.2001.073. PMID 11405224.  
  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006). „Quadruplex DNA: sequence, topology and structure”. Nucleic Acids Research 34 (19), 5402–15. o. DOI:10.1093/nar/gkl655. PMID 17012276.  
  • Cao K, Ryvkin P, Johnson FB (2012. május 1.). „Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential”. Methods 57 (1), 3–10. o. DOI:10.1016/j.ymeth.2012.05.002. PMID 22652626.  
  • Kudlicki AS (2016). „G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome”. PLOS ONE 11 (1), e0146174. o. DOI:10.1371/journal.pone.0146174. PMID 26727593.  
  • Murat P, Balasubramanian S (2014. április 1.). „Existence and consequences of G-quadruplex structures in DNA”. Current Opinion in Genetics & Development 25 (25), 22–29. o. DOI:10.1016/j.gde.2013.10.012. PMID 24584093.  
  • Miyoshi D, Karimata H, Sugimoto N (2006. június 1.). „Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions”. Journal of the American Chemical Society 128 (24), 7957–63. o. DOI:10.1021/ja061267m. PMID 16771510.  
  • Zheng KW, Chen Z, Hao YH, Tan Z (2010. január 1.). „Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA”. Nucleic Acids Research 38 (1), 327–38. o. DOI:10.1093/nar/gkp898. PMID 19858105.  
  • Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N (2016. február 1.). „Real-Time Monitoring of G-Quadruplex Formation during Transcription”. Analytical Chemistry 88 (4), 1984–9. o. DOI:10.1021/acs.analchem.5b04396. PMID 26810457.  
  • Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z (2011. augusztus 1.). „G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase”. Nucleic Acids Research 39 (14), 6229–37. o. DOI:10.1093/nar/gkr164. PMID 21441540.  
  • Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001. július 1.). „In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei”. Proceedings of the National Academy of Sciences of the United States of America 98 (15), 8572–7. o. DOI:10.1073/pnas.141229498. PMID 11438689.  
  • Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005. október 1.). „Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo”. Nature Structural & Molecular Biology 12 (10), 847–54. o. DOI:10.1038/nsmb982. PMID 16142245.  
  • Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD (2018. június 1.). „Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation”. The Journal of Biological Chemistry 293 (24), 9473–9485. o. DOI:10.1074/jbc.RA118.002158. PMID 29674319.  
  • Richl T, Kuper J, Kisker C (2024. február 26.). „G-quadruplex-mediated genomic instability drives SNVs in cancer”. Nucleic Acids Res 52 (4), gkae098. o. DOI:10.1093/nar/gkae098. (Hozzáférés: 2024. február 26.)  
  • Volná A, Bartas M, Karlický V, Nezval J, Kundrátová K, Pečinka P, Špunda V, Červeň J (2021. július 1.). „G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story”. International Journal of Molecular Sciences 22 (14), 7381. o. DOI:10.3390/ijms22147381. PMID 34299001.  
  • Simonsson T, Pecinka P, Kubista M (1998. március 1.). „DNA tetraplex formation in the control region of c-myc”. Nucleic Acids Research 26 (5), 1167–72. o. DOI:10.1093/nar/26.5.1167. PMID 9469822.  
  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America 99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID 12195017.  
  • Huppert JL, Balasubramanian S (2006. december 14.). „G-quadruplexes in promoters throughout the human genome”. Nucleic Acids Research 35 (2), 406–13. o. DOI:10.1093/nar/gkl1057. PMID 17169996.  
  • Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006. február 1.). „An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution”. Journal of the American Chemical Society 128 (4), 1096–8. o. DOI:10.1021/ja055636a. PMID 16433524.  
  • Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006. június 1.). „A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene”. Biochemistry 45 (25), 7854–60. o. DOI:10.1021/bi0601510. PMID 16784237.  
  • Huppert JL, Balasubramanian S (2005). „Prevalence of quadruplexes in the human genome”. Nucleic Acids Research 33 (9), 2908–16. o. DOI:10.1093/nar/gki609. PMID 15914667.  
  • Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. május 1.). „Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation”. Genome Research 16 (5), 644–55. o. DOI:10.1101/gr.4508806. PMID 16651665.  
  • Kamath-Loeb A, Loeb LA, Fry M (2012). „The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures”. PLOS ONE 7 (1), e30189. o. DOI:10.1371/journal.pone.0030189. PMID 22272300.  
  • Vaughn JP, Creacy SD, Routh ED, Joyner-Butt C, Jenkins GS, Pauli S, Nagamine Y, Akman SA (2005. november 1.). „The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates”. The Journal of Biological Chemistry 280 (46), 38117–20. o. DOI:10.1074/jbc.C500348200. PMID 16150737.  
  • Chen MC, Ferré-D'Amaré AR (2017. augusztus 15.). „Structural Basis of DEAH/RHA Helicase Activity”. Crystals 7 (8), 253. o. DOI:10.3390/cryst7080253.  
  • Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S (2009. január 1.). „Metastases Suppressor NM23-H2 Interaction With G-quadruplex DNA Within c-MYC Promoter Nuclease Hypersensitive Element Induces c-MYC Expression”. Nucleic Acids Research 37 (1), 172‐183. o. DOI:10.1093/nar/gkn919. PMID 19033359.  
  • Borman S (2009. november 1.). „Promoter Quadruplexes Folded DNA structures in gene-activation sites may be useful cancer drug targets”. Chemical and Engineering News 87 (44), 28–30. o. DOI:10.1021/cen-v087n044.p028.  
  • Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Ummanni R, Chowdhury S (2017. július 1.). „Epigenetic Suppression of Human Telomerase ( hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-quadruplex-dependent Fashion”. The Journal of Biological Chemistry 292 (37), 15205‐15215. o. DOI:10.1074/jbc.M117.792077. PMID 28717007.  
  • Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S (2019. november 1.). „Telomere Repeat-Binding Factor 2 Binds Extensively to Extra-Telomeric G-quadruplexes and Regulates the Epigenetic Status of Several Gene Promoters”. The Journal of Biological Chemistry 294 (47), 17709–17722. o. DOI:10.1074/jbc.RA119.008687. PMID 31575660.  
  • Maizels N, Gray LT (2013. április 1.). „The G4 genome”. PLOS Genetics 9 (4), e1003468. o. DOI:10.1371/journal.pgen.1003468. PMID 23637633.  
  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013. március 1.). „Quantitative visualization of DNA G-quadruplex structures in human cells”. Nature Chemistry 5 (3), 182–6. o. DOI:10.1038/nchem.1548. PMID 23422559.  
  • Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR (2018. június 1.). „Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36” (angol nyelven). Nature 558 (7710), 465–469. o. DOI:10.1038/s41586-018-0209-9. PMID 29899445.  
  • Rice C, Skordalakes E (2016). „Structure and function of the telomeric CST complex”. Computational and Structural Biotechnology Journal 14, 161–7. o. DOI:10.1016/j.csbj.2016.04.002. PMID 27239262.  
  • Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, Tannahill D, Balasubramanian S (2016. október 1.). „G-quadruplex structures mark human regulatory chromatin”. Nature Genetics 48 (10), 1267–1272. o. DOI:10.1038/ng.3662. PMID 27618450.  
  • Poetsch AR. AP-Seq: A Method to Measure Apurinic Sites and Small Base Adducts Genome-Wide, The Nucleus, Methods in Molecular Biology, 95–108. o.. DOI: 10.1007/978-1-0716-0763-3_8 (2020. augusztus 6.). ISBN 978-1-0716-0762-6 
  • Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020. május 1.). „Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome”. Proceedings of the National Academy of Sciences of the United States of America 117 (21), 11409–11420. o. DOI:10.1073/pnas.1912355117. PMID 32404420.  
  • Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014. június 1.). „Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease”. Neurobiology of Aging 35 (6), 1293–1300. o. DOI:10.1016/j.neurobiolaging.2014.01.004. PMID 24485507.  
  • Sun D, Hurley LH (2009. május 1.). „The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression”. Journal of Medicinal Chemistry 52 (9), 2863–2874. o. DOI:10.1021/jm900055s. PMID 19385599.  
  • Hill JW, Hazra TK, Izumi T, Mitra S (2001. január 1.). „Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair”. Nucleic Acids Research 29 (2), 430–438. o. DOI:10.1093/nar/29.2.430. PMID 11139613.  
  • C. J. Burrows, J. G. Muller (1998. május 1.). „Oxidative Nucleobase Modifications Leading to Strand Scission”. Chemical Reviews 98 (3), 1109–1152. o. DOI:10.1021/cr960421s. PMID 11848927.  
  • A. R. Poetsch (2020. január 7.). „The genomics of oxidative DNA damage, repair, and resulting mutagenesis”. Computational and Structural Biotechnology Journal 18, 207–219. o. DOI:10.1016/j.csbj.2019.12.013. PMID 31993111.  
  • Fleming AM, Burrows CJ (2017. október 1.). „8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA”. Organic & Biomolecular Chemistry 15 (39), 8341–8353. o. DOI:10.1039/C7OB02096A. PMID 28936535.  
  • Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A (2019. szeptember 1.). „Nucleotide excision repair of abasic DNA lesions”. Nucleic Acids Research 47 (16), 8537–8547. o. DOI:10.1093/nar/gkz558. PMID 31226203.  
  • Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017. március 1.). „Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity”. Molecular and Cellular Biology 37 (6). DOI:10.1128/mcb.00401-16. PMID 27994014.  
  • Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK (2008. december 1.). „Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1”. Molecular and Cellular Biology 28 (23), 7066–7080. o. DOI:10.1128/mcb.00244-08. PMID 18809583.  
  • Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003. december 1.). „Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene”. The EMBO Journal 22 (23), 6299–6309. o. DOI:10.1093/emboj/cdg595. PMID 14633989.  
  • Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010. január 1.). „SIRT1 deacetylates APE1 and regulates cellular base excision repair”. Nucleic Acids Research 38 (3), 832–845. o. DOI:10.1093/nar/gkp1039. PMID 19934257.  
  • Neidle S (2016. július 1.). „Quadruplex Nucleic Acids as Novel Therapeutic Targets” (angol nyelven). Journal of Medicinal Chemistry 59 (13), 5987–6011. o. DOI:10.1021/acs.jmedchem.5b01835. PMID 26840940.  
  • T. A. Brooks, S. Kendrick, L. Hurley (2010. szeptember 1.). „Making sense of G-quadruplex and i-motif functions in oncogene promoters”. The FEBS Journal 277 (17), 3459–69. o. DOI:10.1111/j.1742-4658.2010.07759.x. PMID 20670278.  
  • Ou TM, Lin J, Lu YJ, Hou JQ, Tan JH, Chen SH, Li Z, Li YP, Li D, Gu LQ, Huang ZS (2011. augusztus 1.). „Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex”. Journal of Medicinal Chemistry 54 (16), 5671–9. o. DOI:10.1021/jm200062u. PMID 21774525.  
  • Sharma S, Mukherjee AK, Roy SS, Bagri S, Lier S, Verma M, Sengupta A, Kumar M, Nesse G, Pandey DP, Chowdhury S (2020. január 1.). „Human Telomerase Expression is under Direct Transcriptional Control of the Telomere-binding-factor TRF2”. bioRxiv. DOI:10.1101/2020.01.15.907626.  
  • Sun D, Guo K, Rusche JJ, Hurley LH (2005. október 12.). „Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents”. Nucleic Acids Research 33 (18), 6070–80. o. DOI:10.1093/nar/gki917. PMID 16239639.  
  • Hussain T, Saha D, Purohit G, Mukherjee AK, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017. szeptember 1.). „Transcription Regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 Is Epigenetically Controlled Through the REST Repressor Complex”. Scientific Reports 7 (1), 11541. o. DOI:10.1038/s41598-017-11177-1. PMID 28912501.  
  • De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005. december 1.). „Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter”. Biochemistry 44 (49), 16341–50. o. DOI:10.1021/bi051618u. PMID 16331995.  
  • Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007. augusztus 1.). „Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene”. Journal of the American Chemical Society 129 (33), 10220–8. o. DOI:10.1021/ja072185g. PMID 17672459.  
  • Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007. november 26.). „Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4”. Nucleic Acids Research 35 (22), 7698–713. o. DOI:10.1093/nar/gkm538. PMID 17984069.  
  • Chilakamarthi U, Koteshwar D, Jinka S, Vamsi Krishna N, Sridharan K, Nagesh N, Giribabu L (2018. november 1.). „Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction”. Biochemistry 57 (46), 6514–6527. o. DOI:10.1021/acs.biochem.8b00843. PMID 30369235.  
  • Ohnmacht SA, Marchetti C, Gunaratnam M, Besser RJ, Haider SM, Di Vita G, Lowe HL, Mellinas-Gomez M, Diocou S, Robson M, Šponer J, Islam B, Pedley RB, Hartley JA, Neidle S (2015. június 1.). „A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer”. Scientific Reports 5, 11385. o. DOI:10.1038/srep11385. PMID 26077929.  
  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America 99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID 12195017.  
  • Collie GW, Promontorio R, Hampel SM, Micco M, Neidle S, Parkinson GN (2012. február 1.). „Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands” (angol nyelven). Journal of the American Chemical Society 134 (5), 2723–31. o. DOI:10.1021/ja2102423. PMID 22280460.  
  • Todd AK, Johnston M, Neidle S (2005). „Highly prevalent putative quadruplex sequence motifs in human DNA”. Nucleic Acids Research 33 (9), 2901–7. o. DOI:10.1093/nar/gki553. PMID 15914666.  
  • Frank-Kamenetskii MD, Mirkin SM (1995). „Triplex DNA structures”. Annual Review of Biochemistry 64 (9), 65–95. o. DOI:10.1146/annurev.bi.64.070195.000433. PMID 7574496.  
  • Guo K, Gokhale V, Hurley LH, Sun D (2008. augusztus 1.). „Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene”. Nucleic Acids Research 36 (14), 4598–608. o. DOI:10.1093/nar/gkn380. PMID 18614607.  
  • Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD (1987). „DNA H form requires a homopurine-homopyrimidine mirror repeat”. Nature 330 (6147), 495–7. o. DOI:10.1038/330495a0. PMID 2825028.  
  • (2019. szeptember 15.) „G4Hunter web application: a web server for G-quadruplex prediction” (angol nyelven). Bioinformatics 35 (18), 3493–3495. o. DOI:10.1093/bioinformatics/btz087. ISSN 1367-4803. PMID 30721922.  
  • (2018) „G4RNA screener web server: User focused interface for RNA G-quadruplex prediction” (angol nyelven). Biochimie 151, 115–118. o. DOI:10.1016/j.biochi.2018.06.002. PMID 29885355.  
  • C. K. Kwok, C. J. Merrick (2017. október 1.). „G-Quadruplexes: Prediction, Characterization, and Biological Application”. Trends in Biotechnology 35 (10), 997–1013. o. DOI:10.1016/j.tibtech.2017.06.012. PMID 28755976.  
  • H. Han, L. H. Hurley, M. Salazar (1999. január 1.). „A DNA polymerase stop assay for G-quadruplex-interactive compounds”. Nucleic Acids Research 27 (2), 537–542. o. DOI:10.1093/nar/27.2.537. PMID 9862977.  
  • Sun D, Hurley LH. Biochemical Techniques for the Characterization of G-Quadruplex Structures: EMSA, DMS Footprinting, and DNA Polymerase Stop Assay, G-Quadruplex DNA, Methods in Molecular Biology. Humana Press, 65–79. o.. DOI: 10.1007/978-1-59745-363-9_5 (2009. október 23.). ISBN 9781588299505 
  • S- Paramasovan, I. Rujan, P. H. Bolton (2007. december 1.). „Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding”. Methods 43 (4), 324–331. o. DOI:10.1016/j.ymeth.2007.02.009. PMID 17967702.  
  • Mergny JL, Phan AT, Lacroix L (1998. szeptember 1.). „Following G-quartet formation by UV-spectroscopy”. FEBS Letters 435 (1), 74–78. o. DOI:10.1016/s0014-5793(98)01043-6. PMID 9755862.  
  • An N, Fleming AM, Middleton EG, Burrows CJ (2014. október 1.). „Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity”. Proceedings of the National Academy of Sciences of the United States of America 111 (40), 14325–14331. o. DOI:10.1073/pnas.1415944111. PMID 25225404.  
  • Bošković F, Zhu J, Chen K, Keyser UF (2019. november 1.). „Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores”. Nano Letters 19 (11), 7996–8001. o. DOI:10.1021/acs.nanolett.9b03184. PMID 31577148.  
  • Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM (2015. június 1.). „G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome”. FEBS Letters 589 (14), 1653–68. o. DOI:10.1016/j.febslet.2015.05.003. PMID 25979174.  
  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002. június 1.). „The prevalence of frontotemporal dementia”. Neurology 58 (11), 1615–21. o. DOI:10.1212/WNL.58.11.1615. PMID 12058088.  
  • Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, Stewart H, Finger E, Volkening K, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Knopman DS, Kretzschmar HA, Neumann M, Caselli RJ, White CL, Mackenzie IR, Petersen RC, Strong MJ, Miller BL, Boeve BF, Uitti RJ, Boylan KB, Wszolek ZK, Graff-Radford NR, Dickson DW, Ross OA, Rademakers R (2012. december 1.). „Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype”. Neurobiology of Aging 33 (12), 2950.e5–7. o. DOI:10.1016/j.neurobiolaging.2012.07.005. PMID 22840558.  
  • Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, Campbell T, Uphill J, Borg A, Fratta P, Orrell RW, Malaspina A, Rowe J, Brown J, Hodges J, Sidle K, Polke JM, Houlden H, Schott JM, Fox NC, Rossor MN, Tabrizi SJ, Isaacs AM, Hardy J, Warren JD, Collinge J, Mead S (2013. március 1.). „Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population”. American Journal of Human Genetics 92 (3), 345–353. o. DOI:10.1016/j.ajhg.2013.01.011. PMID 23434116.  
  • Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, Isaacs AM (2012. december 1.). „C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes”. Scientific Reports 2, 1016. o. DOI:10.1038/srep01016. PMID 23264878.  
  • Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE (2013. április 1.). „The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures”. The Journal of Biological Chemistry 288 (14), 9860–9866. o. DOI:10.1074/jbc.C113.452532. PMID 23423380.  
  • Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014. március 1.). „C9orf72 nucleotide repeat structures initiate molecular cascades of disease”. Nature 507 (7491), 195–200. o. DOI:10.1038/nature13124. PMID 24598541.  
  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001. november 1.). „Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function”. Cell 107 (4), 489–499. o. DOI:10.1016/S0092-8674(01)00566-9. PMID 11719189.  
  • Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003. december 1.). „Phosphorylation influences the translation state of FMRP-associated polyribosomes”. Human Molecular Genetics 12 (24), 3295–3305. o. DOI:10.1093/hmg/ddg350. PMID 14570712.  
  • Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H (2009. február 1.). „Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein”. The Journal of Biological Chemistry 284 (7), 4255–4266. o. DOI:10.1074/jbc.M807354200. PMID 19097999.  
  • Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991. augusztus 1.). „Absence of expression of the FMR-1 gene in fragile X syndrome”. Cell 66 (4), 817–822. o. DOI:10.1016/0092-8674(91)90125-I. PMID 1878973.  
  • Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992. szeptember 1.). „DNA methylation represses FMR-1 transcription in fragile X syndrome”. Human Molecular Genetics 1 (6), 397–400. o. DOI:10.1093/hmg/1.6.397. PMID 1301913.  
  • S. Mizielinska, A. M. Isaacs (2014. október 1.). „C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?”. Current Opinion in Neurology 27 (5), 515–523. o. DOI:10.1097/WCO.0000000000000130. PMID 25188012.  
  • Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013. október 1.). „RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention”. Neuron 80 (2), 415–28. o. DOI:10.1016/j.neuron.2013.10.015. PMID 24139042.  
  • Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J (2013. november 1.). „Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration”. Proceedings of the National Academy of Sciences of the United States of America 110 (47), E4530–9. o. DOI:10.1073/pnas.1318835110. PMID 24170860.  
  • Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013. október 1.). „Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion”. Science Translational Medicine 5 (208), 208ra149. o. DOI:10.1126/scitranslmed.3007529. PMID 24154603.  
  • Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012. augusztus 1.). „Targeting nuclear RNA for in vivo correction of myotonic dystrophy”. Nature 488 (7409), 111–5. o. DOI:10.1038/nature11362. PMID 22859208.  
  • Lee JE, Bennett CF, Cooper TA (2012. március 1.). „RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1”. Proceedings of the National Academy of Sciences of the United States of America 109 (11), 4221–6. o. DOI:10.1073/pnas.1117019109. PMID 22371589.  
  • Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011. december 1.). „Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin”. Molecular Therapy 19 (12), 2178–85. o. DOI:10.1038/mt.2011.201. PMID 21971427.  
  • Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010. november 1.). „Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat”. Biochemistry 49 (47), 10166–78. o. DOI:10.1021/bi101208k. PMID 21028906.  
  • Cogoi S, Paramasivam M, Filichev V, Géci I, Pedersen EB, Xodo LE (2009. január 1.). „Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells”. Journal of Medicinal Chemistry 52 (2), 564–568. o. DOI:10.1021/jm800874t. PMID 19099510.  
  • Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE (2013. április 1.). „MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice”. Nucleic Acids Research 41 (7), 4049–4064. o. DOI:10.1093/nar/gkt127. PMID 23471001.  
  • Campbell NH, Patel M, Tofa AB, Ghosh R, Parkinson GN, Neidle S (2009. március 1.). „Selectivity in ligand recognition of G-quadruplex loops”. Biochemistry 48 (8), 1675–80. o. DOI:10.1021/bi802233v. PMID 19173611.  
  • Ohnmacht SA, Neidle S (2014. június 1.). „Small-molecule quadruplex-targeted drug discovery”. Bioorganic & Medicinal Chemistry Letters 24 (12), 2602–12. o. DOI:10.1016/j.bmcl.2014.04.029. PMID 24814531.  
  • Zamiri B, Reddy K, Macgregor RB, Pearson CE (2014. február 1.). „TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins”. The Journal of Biological Chemistry 289 (8), 4653–9. o. DOI:10.1074/jbc.C113.502336. PMID 24371143.  
  • R. Vilar.szerk.: A. Sigel, H. Sigel, E. Freisinger, R. K. Sigel: Chapter 12. Nucleic Acid Quadruplexes and Metallo-Drugs, Metallo-Drugs: Development and Action of Anticancer Agents, 325–349. o.. DOI: 10.1515/9783110470734-018 (2018). ISBN 9783110470734 

elsevier.com

linkinghub.elsevier.com

figshare.com

genecards.org

keele.ac.uk

eprints.keele.ac.uk

nih.gov

ncbi.nlm.nih.gov

  • J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian (2010. július 1.). „G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae”. PLOS Computational Biology 6 (7), e1000861. o. DOI:10.1371/journal.pcbi.1000861. PMID 20676380.  
  • Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (2017. március 1.). „A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1”. Journal of Visualized Experiments 121 (121). DOI:10.3791/55496. PMID 28362374.  
  • W. I. Sundquist, A. Klug (1989. december 1.). „Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops”. Nature 342 (6251), 825–829. o. DOI:10.1038/342825a0. PMID 2601741.  
  • Sen D, Gilbert W (1988. július 1.). „Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis”. Nature 334 (6180), 364–366. o. DOI:10.1038/334364a0. PMID 3393228.  
  • Rawal P, Kummarasetti VB, Ravindran R, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. augusztus 6.). „Genome-wide Prediction of G4 DNA as Regulatory Motifs: Role in Escherichia Coli Global Regulation”. Genome Research 16 (5), 644‐655. o. DOI:10.1101/gr.4508806. PMID 16651665.  
  • Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008). „Genome-wide Computational and Expression Analyses Reveal G-quadruplex DNA Motifs as Conserved Cis-Regulatory Elements in Human and Related Species”. Journal of Medicinal Chemistry 51 (18), 5641‐5649. o. DOI:10.1021/jm800448a. PMID 18767830.  
  • H. Han, L. H. Hurley (2000. április 1.). „G-quadruplex DNA: a potential target for anti-cancer drug design”. Trends in Pharmacological Sciences 21 (4), 136–142. o. DOI:10.1016/s0165-6147(00)01457-7. PMID 10740289.  
  • M. L. Bochman, K. Paeschke, V. A. Zakian (2012. november 1.). „DNA secondary structures: stability and function of G-quadruplex structures”. Nature Reviews. Genetics 13 (11), 770–80. o. DOI:10.1038/nrg3296. PMID 23032257.  
  • Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008. augusztus 6.). „QuadBase: Genome-Wide Database of G4 DNA--occurrence and Conservation in Human, Chimpanzee, Mouse and Rat Promoters and 146 Microbes”. Nucleic Acids Research 36 (Database), D381‐D385. o. DOI:10.1093/nar/gkm781. PMID 17962308.  
  • P. Dhapola, S. Chowdhury (2016. július 1.). „QuadBase2: Web Server for Multiplexed Guanine Quadruplex Mining and Visualization”. Nucleic Acids Research 44 (W1), W277‐W283. o. DOI:10.1093/nar/gkw425. PMID 27185890.  
  • D. Rhodes, H. J. Lipps (2015. október 1.). „G-quadruplexes and their regulatory roles in biology”. Nucleic Acids Research 43 (18), 8627–37. o. DOI:10.1093/nar/gkv862. PMID 26350216.  
  • Gellert M, Lipsett MN, Davies DR (1962. december 1.). „Helix formation by guanylic acid”. Proceedings of the National Academy of Sciences of the United States of America 48 (12), 2013–2018. o. DOI:10.1073/pnas.48.12.2013. PMID 13947099.  
  • Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987. december 1.). „Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs”. Cell 51 (6), 899–908. o. DOI:10.1016/0092-8674(87)90577-0. PMID 3690664.  
  • (2010. október 10.) „Small-molecule-mediated G-quadruplex isolation from human cells”. Nature Chemistry 2 (12), 1095–1098. o. DOI:10.1038/nchem.842. PMID 21107376.  
  • (2012. február 5.) „Small-molecule–induced DNA damage identifies alternative DNA structures in human genes”. Nature Chemical Biology 8 (3), 301–310. o. DOI:10.1038/nchembio.780. PMID 22306580.  
  • T. Simonsson (2001. április 1.). „G-quadruplex DNA structures--variations on a theme”. Biological Chemistry 382 (4), 621–8. o. DOI:10.1515/BC.2001.073. PMID 11405224.  
  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006). „Quadruplex DNA: sequence, topology and structure”. Nucleic Acids Research 34 (19), 5402–15. o. DOI:10.1093/nar/gkl655. PMID 17012276.  
  • Cao K, Ryvkin P, Johnson FB (2012. május 1.). „Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential”. Methods 57 (1), 3–10. o. DOI:10.1016/j.ymeth.2012.05.002. PMID 22652626.  
  • Kudlicki AS (2016). „G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome”. PLOS ONE 11 (1), e0146174. o. DOI:10.1371/journal.pone.0146174. PMID 26727593.  
  • Murat P, Balasubramanian S (2014. április 1.). „Existence and consequences of G-quadruplex structures in DNA”. Current Opinion in Genetics & Development 25 (25), 22–29. o. DOI:10.1016/j.gde.2013.10.012. PMID 24584093.  
  • Miyoshi D, Karimata H, Sugimoto N (2006. június 1.). „Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions”. Journal of the American Chemical Society 128 (24), 7957–63. o. DOI:10.1021/ja061267m. PMID 16771510.  
  • Zheng KW, Chen Z, Hao YH, Tan Z (2010. január 1.). „Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA”. Nucleic Acids Research 38 (1), 327–38. o. DOI:10.1093/nar/gkp898. PMID 19858105.  
  • Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N (2016. február 1.). „Real-Time Monitoring of G-Quadruplex Formation during Transcription”. Analytical Chemistry 88 (4), 1984–9. o. DOI:10.1021/acs.analchem.5b04396. PMID 26810457.  
  • Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z (2011. augusztus 1.). „G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase”. Nucleic Acids Research 39 (14), 6229–37. o. DOI:10.1093/nar/gkr164. PMID 21441540.  
  • Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001. július 1.). „In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei”. Proceedings of the National Academy of Sciences of the United States of America 98 (15), 8572–7. o. DOI:10.1073/pnas.141229498. PMID 11438689.  
  • Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005. október 1.). „Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo”. Nature Structural & Molecular Biology 12 (10), 847–54. o. DOI:10.1038/nsmb982. PMID 16142245.  
  • Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD (2018. június 1.). „Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation”. The Journal of Biological Chemistry 293 (24), 9473–9485. o. DOI:10.1074/jbc.RA118.002158. PMID 29674319.  
  • Volná A, Bartas M, Karlický V, Nezval J, Kundrátová K, Pečinka P, Špunda V, Červeň J (2021. július 1.). „G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story”. International Journal of Molecular Sciences 22 (14), 7381. o. DOI:10.3390/ijms22147381. PMID 34299001.  
  • Simonsson T, Pecinka P, Kubista M (1998. március 1.). „DNA tetraplex formation in the control region of c-myc”. Nucleic Acids Research 26 (5), 1167–72. o. DOI:10.1093/nar/26.5.1167. PMID 9469822.  
  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America 99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID 12195017.  
  • Huppert JL, Balasubramanian S (2006. december 14.). „G-quadruplexes in promoters throughout the human genome”. Nucleic Acids Research 35 (2), 406–13. o. DOI:10.1093/nar/gkl1057. PMID 17169996.  
  • Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006. február 1.). „An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution”. Journal of the American Chemical Society 128 (4), 1096–8. o. DOI:10.1021/ja055636a. PMID 16433524.  
  • Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006. június 1.). „A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene”. Biochemistry 45 (25), 7854–60. o. DOI:10.1021/bi0601510. PMID 16784237.  
  • Huppert JL, Balasubramanian S (2005). „Prevalence of quadruplexes in the human genome”. Nucleic Acids Research 33 (9), 2908–16. o. DOI:10.1093/nar/gki609. PMID 15914667.  
  • Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. május 1.). „Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation”. Genome Research 16 (5), 644–55. o. DOI:10.1101/gr.4508806. PMID 16651665.  
  • Kamath-Loeb A, Loeb LA, Fry M (2012). „The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures”. PLOS ONE 7 (1), e30189. o. DOI:10.1371/journal.pone.0030189. PMID 22272300.  
  • Vaughn JP, Creacy SD, Routh ED, Joyner-Butt C, Jenkins GS, Pauli S, Nagamine Y, Akman SA (2005. november 1.). „The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates”. The Journal of Biological Chemistry 280 (46), 38117–20. o. DOI:10.1074/jbc.C500348200. PMID 16150737.  
  • Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S (2009. január 1.). „Metastases Suppressor NM23-H2 Interaction With G-quadruplex DNA Within c-MYC Promoter Nuclease Hypersensitive Element Induces c-MYC Expression”. Nucleic Acids Research 37 (1), 172‐183. o. DOI:10.1093/nar/gkn919. PMID 19033359.  
  • Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Ummanni R, Chowdhury S (2017. július 1.). „Epigenetic Suppression of Human Telomerase ( hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-quadruplex-dependent Fashion”. The Journal of Biological Chemistry 292 (37), 15205‐15215. o. DOI:10.1074/jbc.M117.792077. PMID 28717007.  
  • Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S (2019. november 1.). „Telomere Repeat-Binding Factor 2 Binds Extensively to Extra-Telomeric G-quadruplexes and Regulates the Epigenetic Status of Several Gene Promoters”. The Journal of Biological Chemistry 294 (47), 17709–17722. o. DOI:10.1074/jbc.RA119.008687. PMID 31575660.  
  • Maizels N, Gray LT (2013. április 1.). „The G4 genome”. PLOS Genetics 9 (4), e1003468. o. DOI:10.1371/journal.pgen.1003468. PMID 23637633.  
  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013. március 1.). „Quantitative visualization of DNA G-quadruplex structures in human cells”. Nature Chemistry 5 (3), 182–6. o. DOI:10.1038/nchem.1548. PMID 23422559.  
  • Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR (2018. június 1.). „Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36” (angol nyelven). Nature 558 (7710), 465–469. o. DOI:10.1038/s41586-018-0209-9. PMID 29899445.  
  • Rice C, Skordalakes E (2016). „Structure and function of the telomeric CST complex”. Computational and Structural Biotechnology Journal 14, 161–7. o. DOI:10.1016/j.csbj.2016.04.002. PMID 27239262.  
  • Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, Di Antonio M, Pike J, Kimura H, Narita M, Tannahill D, Balasubramanian S (2016. október 1.). „G-quadruplex structures mark human regulatory chromatin”. Nature Genetics 48 (10), 1267–1272. o. DOI:10.1038/ng.3662. PMID 27618450.  
  • Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020. május 1.). „Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome”. Proceedings of the National Academy of Sciences of the United States of America 117 (21), 11409–11420. o. DOI:10.1073/pnas.1912355117. PMID 32404420.  
  • Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014. június 1.). „Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease”. Neurobiology of Aging 35 (6), 1293–1300. o. DOI:10.1016/j.neurobiolaging.2014.01.004. PMID 24485507.  
  • Sun D, Hurley LH (2009. május 1.). „The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression”. Journal of Medicinal Chemistry 52 (9), 2863–2874. o. DOI:10.1021/jm900055s. PMID 19385599.  
  • Hill JW, Hazra TK, Izumi T, Mitra S (2001. január 1.). „Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair”. Nucleic Acids Research 29 (2), 430–438. o. DOI:10.1093/nar/29.2.430. PMID 11139613.  
  • C. J. Burrows, J. G. Muller (1998. május 1.). „Oxidative Nucleobase Modifications Leading to Strand Scission”. Chemical Reviews 98 (3), 1109–1152. o. DOI:10.1021/cr960421s. PMID 11848927.  
  • A. R. Poetsch (2020. január 7.). „The genomics of oxidative DNA damage, repair, and resulting mutagenesis”. Computational and Structural Biotechnology Journal 18, 207–219. o. DOI:10.1016/j.csbj.2019.12.013. PMID 31993111.  
  • Fleming AM, Burrows CJ (2017. október 1.). „8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA”. Organic & Biomolecular Chemistry 15 (39), 8341–8353. o. DOI:10.1039/C7OB02096A. PMID 28936535.  
  • Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A (2019. szeptember 1.). „Nucleotide excision repair of abasic DNA lesions”. Nucleic Acids Research 47 (16), 8537–8547. o. DOI:10.1093/nar/gkz558. PMID 31226203.  
  • Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017. március 1.). „Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity”. Molecular and Cellular Biology 37 (6). DOI:10.1128/mcb.00401-16. PMID 27994014.  
  • Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK (2008. december 1.). „Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1”. Molecular and Cellular Biology 28 (23), 7066–7080. o. DOI:10.1128/mcb.00244-08. PMID 18809583.  
  • Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003. december 1.). „Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene”. The EMBO Journal 22 (23), 6299–6309. o. DOI:10.1093/emboj/cdg595. PMID 14633989.  
  • Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010. január 1.). „SIRT1 deacetylates APE1 and regulates cellular base excision repair”. Nucleic Acids Research 38 (3), 832–845. o. DOI:10.1093/nar/gkp1039. PMID 19934257.  
  • Neidle S (2016. július 1.). „Quadruplex Nucleic Acids as Novel Therapeutic Targets” (angol nyelven). Journal of Medicinal Chemistry 59 (13), 5987–6011. o. DOI:10.1021/acs.jmedchem.5b01835. PMID 26840940.  
  • T. A. Brooks, S. Kendrick, L. Hurley (2010. szeptember 1.). „Making sense of G-quadruplex and i-motif functions in oncogene promoters”. The FEBS Journal 277 (17), 3459–69. o. DOI:10.1111/j.1742-4658.2010.07759.x. PMID 20670278.  
  • Ou TM, Lin J, Lu YJ, Hou JQ, Tan JH, Chen SH, Li Z, Li YP, Li D, Gu LQ, Huang ZS (2011. augusztus 1.). „Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex”. Journal of Medicinal Chemistry 54 (16), 5671–9. o. DOI:10.1021/jm200062u. PMID 21774525.  
  • Sun D, Guo K, Rusche JJ, Hurley LH (2005. október 12.). „Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents”. Nucleic Acids Research 33 (18), 6070–80. o. DOI:10.1093/nar/gki917. PMID 16239639.  
  • Hussain T, Saha D, Purohit G, Mukherjee AK, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017. szeptember 1.). „Transcription Regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 Is Epigenetically Controlled Through the REST Repressor Complex”. Scientific Reports 7 (1), 11541. o. DOI:10.1038/s41598-017-11177-1. PMID 28912501.  
  • De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005. december 1.). „Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter”. Biochemistry 44 (49), 16341–50. o. DOI:10.1021/bi051618u. PMID 16331995.  
  • Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007. augusztus 1.). „Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene”. Journal of the American Chemical Society 129 (33), 10220–8. o. DOI:10.1021/ja072185g. PMID 17672459.  
  • Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007. november 26.). „Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4”. Nucleic Acids Research 35 (22), 7698–713. o. DOI:10.1093/nar/gkm538. PMID 17984069.  
  • Chilakamarthi U, Koteshwar D, Jinka S, Vamsi Krishna N, Sridharan K, Nagesh N, Giribabu L (2018. november 1.). „Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction”. Biochemistry 57 (46), 6514–6527. o. DOI:10.1021/acs.biochem.8b00843. PMID 30369235.  
  • Ohnmacht SA, Marchetti C, Gunaratnam M, Besser RJ, Haider SM, Di Vita G, Lowe HL, Mellinas-Gomez M, Diocou S, Robson M, Šponer J, Islam B, Pedley RB, Hartley JA, Neidle S (2015. június 1.). „A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer”. Scientific Reports 5, 11385. o. DOI:10.1038/srep11385. PMID 26077929.  
  • Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America 99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID 12195017.  
  • Collie GW, Promontorio R, Hampel SM, Micco M, Neidle S, Parkinson GN (2012. február 1.). „Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands” (angol nyelven). Journal of the American Chemical Society 134 (5), 2723–31. o. DOI:10.1021/ja2102423. PMID 22280460.  
  • Todd AK, Johnston M, Neidle S (2005). „Highly prevalent putative quadruplex sequence motifs in human DNA”. Nucleic Acids Research 33 (9), 2901–7. o. DOI:10.1093/nar/gki553. PMID 15914666.  
  • Frank-Kamenetskii MD, Mirkin SM (1995). „Triplex DNA structures”. Annual Review of Biochemistry 64 (9), 65–95. o. DOI:10.1146/annurev.bi.64.070195.000433. PMID 7574496.  
  • Guo K, Gokhale V, Hurley LH, Sun D (2008. augusztus 1.). „Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene”. Nucleic Acids Research 36 (14), 4598–608. o. DOI:10.1093/nar/gkn380. PMID 18614607.  
  • Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD (1987). „DNA H form requires a homopurine-homopyrimidine mirror repeat”. Nature 330 (6147), 495–7. o. DOI:10.1038/330495a0. PMID 2825028.  
  • S. S. Smith (2010). „Evolutionary expansion of structurally complex DNA sequences”. Cancer Genomics & Proteomics 7 (4), 207–15. o. PMID 20656986.  
  • (2019. szeptember 15.) „G4Hunter web application: a web server for G-quadruplex prediction” (angol nyelven). Bioinformatics 35 (18), 3493–3495. o. DOI:10.1093/bioinformatics/btz087. ISSN 1367-4803. PMID 30721922.  
  • (2018) „G4RNA screener web server: User focused interface for RNA G-quadruplex prediction” (angol nyelven). Biochimie 151, 115–118. o. DOI:10.1016/j.biochi.2018.06.002. PMID 29885355.  
  • C. K. Kwok, C. J. Merrick (2017. október 1.). „G-Quadruplexes: Prediction, Characterization, and Biological Application”. Trends in Biotechnology 35 (10), 997–1013. o. DOI:10.1016/j.tibtech.2017.06.012. PMID 28755976.  
  • H. Han, L. H. Hurley, M. Salazar (1999. január 1.). „A DNA polymerase stop assay for G-quadruplex-interactive compounds”. Nucleic Acids Research 27 (2), 537–542. o. DOI:10.1093/nar/27.2.537. PMID 9862977.  
  • S- Paramasovan, I. Rujan, P. H. Bolton (2007. december 1.). „Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding”. Methods 43 (4), 324–331. o. DOI:10.1016/j.ymeth.2007.02.009. PMID 17967702.  
  • Mergny JL, Phan AT, Lacroix L (1998. szeptember 1.). „Following G-quartet formation by UV-spectroscopy”. FEBS Letters 435 (1), 74–78. o. DOI:10.1016/s0014-5793(98)01043-6. PMID 9755862.  
  • An N, Fleming AM, Middleton EG, Burrows CJ (2014. október 1.). „Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity”. Proceedings of the National Academy of Sciences of the United States of America 111 (40), 14325–14331. o. DOI:10.1073/pnas.1415944111. PMID 25225404.  
  • Bošković F, Zhu J, Chen K, Keyser UF (2019. november 1.). „Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores”. Nano Letters 19 (11), 7996–8001. o. DOI:10.1021/acs.nanolett.9b03184. PMID 31577148.  
  • Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM (2015. június 1.). „G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome”. FEBS Letters 589 (14), 1653–68. o. DOI:10.1016/j.febslet.2015.05.003. PMID 25979174.  
  • C9orf72 chromosome 9 open reading frame 72 [Homo sapiens] - Gene]. National Center for Biotechnology Information. U.S. National Library of Medicine
  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002. június 1.). „The prevalence of frontotemporal dementia”. Neurology 58 (11), 1615–21. o. DOI:10.1212/WNL.58.11.1615. PMID 12058088.  
  • Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, Stewart H, Finger E, Volkening K, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Knopman DS, Kretzschmar HA, Neumann M, Caselli RJ, White CL, Mackenzie IR, Petersen RC, Strong MJ, Miller BL, Boeve BF, Uitti RJ, Boylan KB, Wszolek ZK, Graff-Radford NR, Dickson DW, Ross OA, Rademakers R (2012. december 1.). „Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype”. Neurobiology of Aging 33 (12), 2950.e5–7. o. DOI:10.1016/j.neurobiolaging.2012.07.005. PMID 22840558.  
  • Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, Campbell T, Uphill J, Borg A, Fratta P, Orrell RW, Malaspina A, Rowe J, Brown J, Hodges J, Sidle K, Polke JM, Houlden H, Schott JM, Fox NC, Rossor MN, Tabrizi SJ, Isaacs AM, Hardy J, Warren JD, Collinge J, Mead S (2013. március 1.). „Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population”. American Journal of Human Genetics 92 (3), 345–353. o. DOI:10.1016/j.ajhg.2013.01.011. PMID 23434116.  
  • Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, Isaacs AM (2012. december 1.). „C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes”. Scientific Reports 2, 1016. o. DOI:10.1038/srep01016. PMID 23264878.  
  • Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE (2013. április 1.). „The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures”. The Journal of Biological Chemistry 288 (14), 9860–9866. o. DOI:10.1074/jbc.C113.452532. PMID 23423380.  
  • Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014. március 1.). „C9orf72 nucleotide repeat structures initiate molecular cascades of disease”. Nature 507 (7491), 195–200. o. DOI:10.1038/nature13124. PMID 24598541.  
  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001. november 1.). „Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function”. Cell 107 (4), 489–499. o. DOI:10.1016/S0092-8674(01)00566-9. PMID 11719189.  
  • Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003. december 1.). „Phosphorylation influences the translation state of FMRP-associated polyribosomes”. Human Molecular Genetics 12 (24), 3295–3305. o. DOI:10.1093/hmg/ddg350. PMID 14570712.  
  • Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H (2009. február 1.). „Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein”. The Journal of Biological Chemistry 284 (7), 4255–4266. o. DOI:10.1074/jbc.M807354200. PMID 19097999.  
  • Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991. augusztus 1.). „Absence of expression of the FMR-1 gene in fragile X syndrome”. Cell 66 (4), 817–822. o. DOI:10.1016/0092-8674(91)90125-I. PMID 1878973.  
  • Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992. szeptember 1.). „DNA methylation represses FMR-1 transcription in fragile X syndrome”. Human Molecular Genetics 1 (6), 397–400. o. DOI:10.1093/hmg/1.6.397. PMID 1301913.  
  • S. Mizielinska, A. M. Isaacs (2014. október 1.). „C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?”. Current Opinion in Neurology 27 (5), 515–523. o. DOI:10.1097/WCO.0000000000000130. PMID 25188012.  
  • Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013. október 1.). „RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention”. Neuron 80 (2), 415–28. o. DOI:10.1016/j.neuron.2013.10.015. PMID 24139042.  
  • Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J (2013. november 1.). „Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration”. Proceedings of the National Academy of Sciences of the United States of America 110 (47), E4530–9. o. DOI:10.1073/pnas.1318835110. PMID 24170860.  
  • Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013. október 1.). „Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion”. Science Translational Medicine 5 (208), 208ra149. o. DOI:10.1126/scitranslmed.3007529. PMID 24154603.  
  • Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012. augusztus 1.). „Targeting nuclear RNA for in vivo correction of myotonic dystrophy”. Nature 488 (7409), 111–5. o. DOI:10.1038/nature11362. PMID 22859208.  
  • Lee JE, Bennett CF, Cooper TA (2012. március 1.). „RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1”. Proceedings of the National Academy of Sciences of the United States of America 109 (11), 4221–6. o. DOI:10.1073/pnas.1117019109. PMID 22371589.  
  • Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011. december 1.). „Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin”. Molecular Therapy 19 (12), 2178–85. o. DOI:10.1038/mt.2011.201. PMID 21971427.  
  • Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010. november 1.). „Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat”. Biochemistry 49 (47), 10166–78. o. DOI:10.1021/bi101208k. PMID 21028906.  
  • Cogoi S, Paramasivam M, Filichev V, Géci I, Pedersen EB, Xodo LE (2009. január 1.). „Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells”. Journal of Medicinal Chemistry 52 (2), 564–568. o. DOI:10.1021/jm800874t. PMID 19099510.  
  • Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE (2013. április 1.). „MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice”. Nucleic Acids Research 41 (7), 4049–4064. o. DOI:10.1093/nar/gkt127. PMID 23471001.  
  • Campbell NH, Patel M, Tofa AB, Ghosh R, Parkinson GN, Neidle S (2009. március 1.). „Selectivity in ligand recognition of G-quadruplex loops”. Biochemistry 48 (8), 1675–80. o. DOI:10.1021/bi802233v. PMID 19173611.  
  • Ohnmacht SA, Neidle S (2014. június 1.). „Small-molecule quadruplex-targeted drug discovery”. Bioorganic & Medicinal Chemistry Letters 24 (12), 2602–12. o. DOI:10.1016/j.bmcl.2014.04.029. PMID 24814531.  
  • Zamiri B, Reddy K, Macgregor RB, Pearson CE (2014. február 1.). „TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins”. The Journal of Biological Chemistry 289 (8), 4653–9. o. DOI:10.1074/jbc.C113.502336. PMID 24371143.  

oup.com

academic.oup.com

ucl.ac.uk

discovery.ucl.ac.uk

worldcat.org