E. Largy, J. Mergny, V. Gabelica.szerk.: S. Astrid, S. Helmut, K. O. Roland: Chapter 7. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability, The Alkali Metal Ions: Their Role in Life, Metal Ions in Life Sciences. Springer, 203–258. o.. DOI: 10.1007/978-3-319-21756-7_7 (2016)
J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian (2010. július 1.). „G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae”. PLOS Computational Biology6 (7), e1000861. o. DOI:10.1371/journal.pcbi.1000861. PMID20676380. PMC2908698.
Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (2017. március 1.). „A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1”. Journal of Visualized Experiments121 (121). DOI:10.3791/55496. PMID28362374. PMC5409278.
E. Largy, J. Mergny, V. Gabelica.szerk.: S. Astrid, S. Helmut, K. O. Roland: Chapter 7. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability, The Alkali Metal Ions: Their Role in Life, Metal Ions in Life Sciences. Springer, 203–258. o.. DOI: 10.1007/978-3-319-21756-7_7 (2016)
W. I. Sundquist, A. Klug (1989. december 1.). „Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops”. Nature342 (6251), 825–829. o. DOI:10.1038/342825a0. PMID2601741.
Sen D, Gilbert W (1988. július 1.). „Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis”. Nature334 (6180), 364–366. o. DOI:10.1038/334364a0. PMID3393228.
Rawal P, Kummarasetti VB, Ravindran R, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006). „Genome-wide Prediction of G4 DNA as Regulatory Motifs: Role in Escherichia Coli Global Regulation”. Genome Research16 (5), 644‐655. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
S. Borman (2007. május 28.). „Ascent of quadruplexes nucleic acid structures become promising drug targets”. Chemical and Engineering News85 (22), 12–17. o. DOI:10.1021/cen-v085n009.p012a.
Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008). „Genome-wide Computational and Expression Analyses Reveal G-quadruplex DNA Motifs as Conserved Cis-Regulatory Elements in Human and Related Species”. Journal of Medicinal Chemistry51 (18), 5641‐5649. o. DOI:10.1021/jm800448a. PMID18767830.
H. Han, L. H. Hurley (2000. április 1.). „G-quadruplex DNA: a potential target for anti-cancer drug design”. Trends in Pharmacological Sciences21 (4), 136–142. o. DOI:10.1016/s0165-6147(00)01457-7. PMID10740289.
M. L. Bochman, K. Paeschke, V. A. Zakian (2012. november 1.). „DNA secondary structures: stability and function of G-quadruplex structures”. Nature Reviews. Genetics13 (11), 770–80. o. DOI:10.1038/nrg3296. PMID23032257. PMC3725559.
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008). „QuadBase: Genome-Wide Database of G4 DNA--occurrence and Conservation in Human, Chimpanzee, Mouse and Rat Promoters and 146 Microbes”. Nucleic Acids Research36 (Database), D381‐D385. o. DOI:10.1093/nar/gkm781. PMID17962308. PMC2238983.
P. Dhapola, S. Chowdhury (2016. július 1.). „QuadBase2: Web Server for Multiplexed Guanine Quadruplex Mining and Visualization”. Nucleic Acids Research44 (W1), W277‐W283. o. DOI:10.1093/nar/gkw425. PMID27185890. PMC4987949.
D. Rhodes, H. J. Lipps (2015. október 1.). „G-quadruplexes and their regulatory roles in biology”. Nucleic Acids Research43 (18), 8627–37. o. DOI:10.1093/nar/gkv862. PMID26350216. PMC4605312.
S. Borman (2009. november 1.). „Promoter quadruplexes folded DNA structures in gene-activation sites may be useful cancer drug targets”. Chemical and Engineering News87 (44), 28–30. o. DOI:10.1021/cen-v087n044.p028.
Gellert M, Lipsett MN, Davies DR (1962. december 1.). „Helix formation by guanylic acid”. Proceedings of the National Academy of Sciences of the United States of America48 (12), 2013–2018. o. DOI:10.1073/pnas.48.12.2013. PMID13947099. PMC221115.
Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987. december 1.). „Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs”. Cell51 (6), 899–908. o. DOI:10.1016/0092-8674(87)90577-0. PMID3690664.
(2010. október 10.) „Small-molecule-mediated G-quadruplex isolation from human cells”. Nature Chemistry2 (12), 1095–1098. o. DOI:10.1038/nchem.842. PMID21107376. PMC3119466.
(2012. február 5.) „Small-molecule–induced DNA damage identifies alternative DNA structures in human genes”. Nature Chemical Biology8 (3), 301–310. o. DOI:10.1038/nchembio.780. PMID22306580. PMC3433707.
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006). „Quadruplex DNA: sequence, topology and structure”. Nucleic Acids Research34 (19), 5402–15. o. DOI:10.1093/nar/gkl655. PMID17012276. PMC1636468.
Cao K, Ryvkin P, Johnson FB (2012. május 1.). „Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential”. Methods57 (1), 3–10. o. DOI:10.1016/j.ymeth.2012.05.002. PMID22652626. PMC3701776.
Kudlicki AS (2016). „G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome”. PLOS ONE11 (1), e0146174. o. DOI:10.1371/journal.pone.0146174. PMID26727593. PMC4699641.
Murat P, Balasubramanian S (2014. április 1.). „Existence and consequences of G-quadruplex structures in DNA”. Current Opinion in Genetics & Development25 (25), 22–29. o. DOI:10.1016/j.gde.2013.10.012. PMID24584093.
Miyoshi D, Karimata H, Sugimoto N (2006. június 1.). „Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions”. Journal of the American Chemical Society128 (24), 7957–63. o. DOI:10.1021/ja061267m. PMID16771510.
Zheng KW, Chen Z, Hao YH, Tan Z (2010. január 1.). „Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA”. Nucleic Acids Research38 (1), 327–38. o. DOI:10.1093/nar/gkp898. PMID19858105. PMC2800236.
Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N (2016. február 1.). „Real-Time Monitoring of G-Quadruplex Formation during Transcription”. Analytical Chemistry88 (4), 1984–9. o. DOI:10.1021/acs.analchem.5b04396. PMID26810457.
Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z (2011. augusztus 1.). „G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase”. Nucleic Acids Research39 (14), 6229–37. o. DOI:10.1093/nar/gkr164. PMID21441540. PMC3152327.
Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001. július 1.). „In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei”. Proceedings of the National Academy of Sciences of the United States of America98 (15), 8572–7. o. DOI:10.1073/pnas.141229498. PMID11438689. PMC37477.
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005. október 1.). „Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo”. Nature Structural & Molecular Biology12 (10), 847–54. o. DOI:10.1038/nsmb982. PMID16142245.
Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD (2018. június 1.). „Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation”. The Journal of Biological Chemistry293 (24), 9473–9485. o. DOI:10.1074/jbc.RA118.002158. PMID29674319. PMC6005428.
Volná A, Bartas M, Karlický V, Nezval J, Kundrátová K, Pečinka P, Špunda V, Červeň J (2021. július 1.). „G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story”. International Journal of Molecular Sciences22 (14), 7381. o. DOI:10.3390/ijms22147381. PMID34299001. PMC8306923.
Simonsson T, Pecinka P, Kubista M (1998. március 1.). „DNA tetraplex formation in the control region of c-myc”. Nucleic Acids Research26 (5), 1167–72. o. DOI:10.1093/nar/26.5.1167. PMID9469822. PMC147388.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Huppert JL, Balasubramanian S (2006. december 14.). „G-quadruplexes in promoters throughout the human genome”. Nucleic Acids Research35 (2), 406–13. o. DOI:10.1093/nar/gkl1057. PMID17169996. PMC1802602.
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006. február 1.). „An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution”. Journal of the American Chemical Society128 (4), 1096–8. o. DOI:10.1021/ja055636a. PMID16433524. PMC2556172.
Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006. június 1.). „A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene”. Biochemistry45 (25), 7854–60. o. DOI:10.1021/bi0601510. PMID16784237. PMC2195898.
Huppert JL, Balasubramanian S (2005). „Prevalence of quadruplexes in the human genome”. Nucleic Acids Research33 (9), 2908–16. o. DOI:10.1093/nar/gki609. PMID15914667. PMC1140081.
Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. május 1.). „Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation”. Genome Research16 (5), 644–55. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
Kamath-Loeb A, Loeb LA, Fry M (2012). „The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures”. PLOS ONE7 (1), e30189. o. DOI:10.1371/journal.pone.0030189. PMID22272300. PMC3260238.
Vaughn JP, Creacy SD, Routh ED, Joyner-Butt C, Jenkins GS, Pauli S, Nagamine Y, Akman SA (2005. november 1.). „The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates”. The Journal of Biological Chemistry280 (46), 38117–20. o. DOI:10.1074/jbc.C500348200. PMID16150737.
Chen MC, Ferré-D'Amaré AR (2017. augusztus 15.). „Structural Basis of DEAH/RHA Helicase Activity”. Crystals7 (8), 253. o. DOI:10.3390/cryst7080253.
Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S (2009. január 1.). „Metastases Suppressor NM23-H2 Interaction With G-quadruplex DNA Within c-MYC Promoter Nuclease Hypersensitive Element Induces c-MYC Expression”. Nucleic Acids Research37 (1), 172‐183. o. DOI:10.1093/nar/gkn919. PMID19033359. PMC2615625.
Borman S (2009. november 1.). „Promoter Quadruplexes Folded DNA structures in gene-activation sites may be useful cancer drug targets”. Chemical and Engineering News87 (44), 28–30. o. DOI:10.1021/cen-v087n044.p028.
Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Ummanni R, Chowdhury S (2017. július 1.). „Epigenetic Suppression of Human Telomerase ( hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-quadruplex-dependent Fashion”. The Journal of Biological Chemistry292 (37), 15205‐15215. o. DOI:10.1074/jbc.M117.792077. PMID28717007. PMC5602382.
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S (2019. november 1.). „Telomere Repeat-Binding Factor 2 Binds Extensively to Extra-Telomeric G-quadruplexes and Regulates the Epigenetic Status of Several Gene Promoters”. The Journal of Biological Chemistry294 (47), 17709–17722. o. DOI:10.1074/jbc.RA119.008687. PMID31575660. PMC6879327.
Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013. március 1.). „Quantitative visualization of DNA G-quadruplex structures in human cells”. Nature Chemistry5 (3), 182–6. o. DOI:10.1038/nchem.1548. PMID23422559. PMC3622242.
Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR (2018. június 1.). „Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36” (angol nyelven). Nature558 (7710), 465–469. o. DOI:10.1038/s41586-018-0209-9. PMID29899445. PMC6261253.
Rice C, Skordalakes E (2016). „Structure and function of the telomeric CST complex”. Computational and Structural Biotechnology Journal14, 161–7. o. DOI:10.1016/j.csbj.2016.04.002. PMID27239262. PMC4872678.
Poetsch AR. AP-Seq: A Method to Measure Apurinic Sites and Small Base Adducts Genome-Wide, The Nucleus, Methods in Molecular Biology, 95–108. o.. DOI: 10.1007/978-1-0716-0763-3_8 (2020. március 20.). ISBN 978-1-0716-0762-6
Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020. május 1.). „Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome”. Proceedings of the National Academy of Sciences of the United States of America117 (21), 11409–11420. o. DOI:10.1073/pnas.1912355117. PMID32404420. PMC7260947.
Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014. június 1.). „Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease”. Neurobiology of Aging35 (6), 1293–1300. o. DOI:10.1016/j.neurobiolaging.2014.01.004. PMID24485507. PMC5576885.
Sun D, Hurley LH (2009. május 1.). „The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression”. Journal of Medicinal Chemistry52 (9), 2863–2874. o. DOI:10.1021/jm900055s. PMID19385599. PMC2757002.
Hill JW, Hazra TK, Izumi T, Mitra S (2001. január 1.). „Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair”. Nucleic Acids Research29 (2), 430–438. o. DOI:10.1093/nar/29.2.430. PMID11139613. PMC29662.
C. J. Burrows, J. G. Muller (1998. május 1.). „Oxidative Nucleobase Modifications Leading to Strand Scission”. Chemical Reviews98 (3), 1109–1152. o. DOI:10.1021/cr960421s. PMID11848927.
A. R. Poetsch (2020. január 7.). „The genomics of oxidative DNA damage, repair, and resulting mutagenesis”. Computational and Structural Biotechnology Journal18, 207–219. o. DOI:10.1016/j.csbj.2019.12.013. PMID31993111. PMC6974700.
Fleming AM, Burrows CJ (2017. október 1.). „8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA”. Organic & Biomolecular Chemistry15 (39), 8341–8353. o. DOI:10.1039/C7OB02096A. PMID28936535. PMC5636683.
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A (2019. szeptember 1.). „Nucleotide excision repair of abasic DNA lesions”. Nucleic Acids Research47 (16), 8537–8547. o. DOI:10.1093/nar/gkz558. PMID31226203. PMC6895268.
Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017. március 1.). „Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity”. Molecular and Cellular Biology37 (6). DOI:10.1128/mcb.00401-16. PMID27994014. PMC5335514.
Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003. december 1.). „Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene”. The EMBO Journal22 (23), 6299–6309. o. DOI:10.1093/emboj/cdg595. PMID14633989. PMC291836.
Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010. január 1.). „SIRT1 deacetylates APE1 and regulates cellular base excision repair”. Nucleic Acids Research38 (3), 832–845. o. DOI:10.1093/nar/gkp1039. PMID19934257. PMC2817463.
T. A. Brooks, S. Kendrick, L. Hurley (2010. szeptember 1.). „Making sense of G-quadruplex and i-motif functions in oncogene promoters”. The FEBS Journal277 (17), 3459–69. o. DOI:10.1111/j.1742-4658.2010.07759.x. PMID20670278. PMC2971675.
Ou TM, Lin J, Lu YJ, Hou JQ, Tan JH, Chen SH, Li Z, Li YP, Li D, Gu LQ, Huang ZS (2011. augusztus 1.). „Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex”. Journal of Medicinal Chemistry54 (16), 5671–9. o. DOI:10.1021/jm200062u. PMID21774525.
Sun D, Guo K, Rusche JJ, Hurley LH (2005. október 12.). „Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents”. Nucleic Acids Research33 (18), 6070–80. o. DOI:10.1093/nar/gki917. PMID16239639. PMC1266068.
Hussain T, Saha D, Purohit G, Mukherjee AK, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017. szeptember 1.). „Transcription Regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 Is Epigenetically Controlled Through the REST Repressor Complex”. Scientific Reports7 (1), 11541. o. DOI:10.1038/s41598-017-11177-1. PMID28912501. PMC5599563.
De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005. december 1.). „Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter”. Biochemistry44 (49), 16341–50. o. DOI:10.1021/bi051618u. PMID16331995.
Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007. augusztus 1.). „Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene”. Journal of the American Chemical Society129 (33), 10220–8. o. DOI:10.1021/ja072185g. PMID17672459. PMC2566970.
Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007. november 26.). „Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4”. Nucleic Acids Research35 (22), 7698–713. o. DOI:10.1093/nar/gkm538. PMID17984069. PMC2190695.
Chilakamarthi U, Koteshwar D, Jinka S, Vamsi Krishna N, Sridharan K, Nagesh N, Giribabu L (2018. november 1.). „Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction”. Biochemistry57 (46), 6514–6527. o. DOI:10.1021/acs.biochem.8b00843. PMID30369235.
Ohnmacht SA, Marchetti C, Gunaratnam M, Besser RJ, Haider SM, Di Vita G, Lowe HL, Mellinas-Gomez M, Diocou S, Robson M, Šponer J, Islam B, Pedley RB, Hartley JA, Neidle S (2015. június 1.). „A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer”. Scientific Reports5, 11385. o. DOI:10.1038/srep11385. PMID26077929. PMC4468576.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Todd AK, Johnston M, Neidle S (2005). „Highly prevalent putative quadruplex sequence motifs in human DNA”. Nucleic Acids Research33 (9), 2901–7. o. DOI:10.1093/nar/gki553. PMID15914666. PMC1140077.
Guo K, Gokhale V, Hurley LH, Sun D (2008. augusztus 1.). „Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene”. Nucleic Acids Research36 (14), 4598–608. o. DOI:10.1093/nar/gkn380. PMID18614607. PMC2504309.
Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD (1987). „DNA H form requires a homopurine-homopyrimidine mirror repeat”. Nature330 (6147), 495–7. o. DOI:10.1038/330495a0. PMID2825028.
H. Han, L. H. Hurley, M. Salazar (1999. január 1.). „A DNA polymerase stop assay for G-quadruplex-interactive compounds”. Nucleic Acids Research27 (2), 537–542. o. DOI:10.1093/nar/27.2.537. PMID9862977. PMC148212.
Sun D, Hurley LH. Biochemical Techniques for the Characterization of G-Quadruplex Structures: EMSA, DMS Footprinting, and DNA Polymerase Stop Assay, G-Quadruplex DNA, Methods in Molecular Biology. Humana Press, 65–79. o.. DOI: 10.1007/978-1-59745-363-9_5 (2009. október 23.). ISBN 9781588299505
S- Paramasovan, I. Rujan, P. H. Bolton (2007. december 1.). „Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding”. Methods43 (4), 324–331. o. DOI:10.1016/j.ymeth.2007.02.009. PMID17967702.
Mergny JL, Phan AT, Lacroix L (1998. szeptember 1.). „Following G-quartet formation by UV-spectroscopy”. FEBS Letters435 (1), 74–78. o. DOI:10.1016/s0014-5793(98)01043-6. PMID9755862.
An N, Fleming AM, Middleton EG, Burrows CJ (2014. október 1.). „Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity”. Proceedings of the National Academy of Sciences of the United States of America111 (40), 14325–14331. o. DOI:10.1073/pnas.1415944111. PMID25225404. PMC4209999.
Bošković F, Zhu J, Chen K, Keyser UF (2019. november 1.). „Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores”. Nano Letters19 (11), 7996–8001. o. DOI:10.1021/acs.nanolett.9b03184. PMID31577148.
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM (2015. június 1.). „G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome”. FEBS Letters589 (14), 1653–68. o. DOI:10.1016/j.febslet.2015.05.003. PMID25979174.
Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002. június 1.). „The prevalence of frontotemporal dementia”. Neurology58 (11), 1615–21. o. DOI:10.1212/WNL.58.11.1615. PMID12058088.
Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, Stewart H, Finger E, Volkening K, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Knopman DS, Kretzschmar HA, Neumann M, Caselli RJ, White CL, Mackenzie IR, Petersen RC, Strong MJ, Miller BL, Boeve BF, Uitti RJ, Boylan KB, Wszolek ZK, Graff-Radford NR, Dickson DW, Ross OA, Rademakers R (2012. december 1.). „Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype”. Neurobiology of Aging33 (12), 2950.e5–7. o. DOI:10.1016/j.neurobiolaging.2012.07.005. PMID22840558. PMC3617405.
Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, Campbell T, Uphill J, Borg A, Fratta P, Orrell RW, Malaspina A, Rowe J, Brown J, Hodges J, Sidle K, Polke JM, Houlden H, Schott JM, Fox NC, Rossor MN, Tabrizi SJ, Isaacs AM, Hardy J, Warren JD, Collinge J, Mead S (2013. március 1.). „Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population”. American Journal of Human Genetics92 (3), 345–353. o. DOI:10.1016/j.ajhg.2013.01.011. PMID23434116. PMC3591848.
Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, Isaacs AM (2012. december 1.). „C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes”. Scientific Reports2, 1016. o. DOI:10.1038/srep01016. PMID23264878. PMC3527825.
Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE (2013. április 1.). „The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures”. The Journal of Biological Chemistry288 (14), 9860–9866. o. DOI:10.1074/jbc.C113.452532. PMID23423380. PMC3617286.
Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014. március 1.). „C9orf72 nucleotide repeat structures initiate molecular cascades of disease”. Nature507 (7491), 195–200. o. DOI:10.1038/nature13124. PMID24598541. PMC4046618.
Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001. november 1.). „Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function”. Cell107 (4), 489–499. o. DOI:10.1016/S0092-8674(01)00566-9. PMID11719189.
Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003. december 1.). „Phosphorylation influences the translation state of FMRP-associated polyribosomes”. Human Molecular Genetics12 (24), 3295–3305. o. DOI:10.1093/hmg/ddg350. PMID14570712.
Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H (2009. február 1.). „Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein”. The Journal of Biological Chemistry284 (7), 4255–4266. o. DOI:10.1074/jbc.M807354200. PMID19097999.
Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991. augusztus 1.). „Absence of expression of the FMR-1 gene in fragile X syndrome”. Cell66 (4), 817–822. o. DOI:10.1016/0092-8674(91)90125-I. PMID1878973.
Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992. szeptember 1.). „DNA methylation represses FMR-1 transcription in fragile X syndrome”. Human Molecular Genetics1 (6), 397–400. o. DOI:10.1093/hmg/1.6.397. PMID1301913.
S. Mizielinska, A. M. Isaacs (2014. október 1.). „C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?”. Current Opinion in Neurology27 (5), 515–523. o. DOI:10.1097/WCO.0000000000000130. PMID25188012. PMC4165481.
Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013. október 1.). „RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention”. Neuron80 (2), 415–28. o. DOI:10.1016/j.neuron.2013.10.015. PMID24139042. PMC4098943.
Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J (2013. november 1.). „Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration”. Proceedings of the National Academy of Sciences of the United States of America110 (47), E4530–9. o. DOI:10.1073/pnas.1318835110. PMID24170860. PMC3839752.
Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013. október 1.). „Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion”. Science Translational Medicine5 (208), 208ra149. o. DOI:10.1126/scitranslmed.3007529. PMID24154603. PMC4090945.
Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012. augusztus 1.). „Targeting nuclear RNA for in vivo correction of myotonic dystrophy”. Nature488 (7409), 111–5. o. DOI:10.1038/nature11362. PMID22859208. PMC4221572.
Lee JE, Bennett CF, Cooper TA (2012. március 1.). „RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1”. Proceedings of the National Academy of Sciences of the United States of America109 (11), 4221–6. o. DOI:10.1073/pnas.1117019109. PMID22371589. PMC3306674.
Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011. december 1.). „Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin”. Molecular Therapy19 (12), 2178–85. o. DOI:10.1038/mt.2011.201. PMID21971427. PMC3242664.
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010. november 1.). „Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat”. Biochemistry49 (47), 10166–78. o. DOI:10.1021/bi101208k. PMID21028906. PMC2991413.
Cogoi S, Paramasivam M, Filichev V, Géci I, Pedersen EB, Xodo LE (2009. január 1.). „Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells”. Journal of Medicinal Chemistry52 (2), 564–568. o. DOI:10.1021/jm800874t. PMID19099510.
Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE (2013. április 1.). „MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice”. Nucleic Acids Research41 (7), 4049–4064. o. DOI:10.1093/nar/gkt127. PMID23471001. PMC3627599.
Campbell NH, Patel M, Tofa AB, Ghosh R, Parkinson GN, Neidle S (2009. március 1.). „Selectivity in ligand recognition of G-quadruplex loops”. Biochemistry48 (8), 1675–80. o. DOI:10.1021/bi802233v. PMID19173611.
Ohnmacht SA, Neidle S (2014. június 1.). „Small-molecule quadruplex-targeted drug discovery”. Bioorganic & Medicinal Chemistry Letters24 (12), 2602–12. o. DOI:10.1016/j.bmcl.2014.04.029. PMID24814531.
Zamiri B, Reddy K, Macgregor RB, Pearson CE (2014. február 1.). „TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins”. The Journal of Biological Chemistry289 (8), 4653–9. o. DOI:10.1074/jbc.C113.502336. PMID24371143. PMC3931028.
R. Vilar.szerk.: A. Sigel, H. Sigel, E. Freisinger, R. K. Sigel: Chapter 12. Nucleic Acid Quadruplexes and Metallo-Drugs, Metallo-Drugs: Development and Action of Anticancer Agents, 325–349. o.. DOI: 10.1515/9783110470734-018 (2018). ISBN 9783110470734
J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian (2010. július 1.). „G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae”. PLOS Computational Biology6 (7), e1000861. o. DOI:10.1371/journal.pcbi.1000861. PMID20676380. PMC2908698.
Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (2017. március 1.). „A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1”. Journal of Visualized Experiments121 (121). DOI:10.3791/55496. PMID28362374. PMC5409278.
W. I. Sundquist, A. Klug (1989. december 1.). „Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops”. Nature342 (6251), 825–829. o. DOI:10.1038/342825a0. PMID2601741.
Sen D, Gilbert W (1988. július 1.). „Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis”. Nature334 (6180), 364–366. o. DOI:10.1038/334364a0. PMID3393228.
Rawal P, Kummarasetti VB, Ravindran R, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006). „Genome-wide Prediction of G4 DNA as Regulatory Motifs: Role in Escherichia Coli Global Regulation”. Genome Research16 (5), 644‐655. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S (2008). „Genome-wide Computational and Expression Analyses Reveal G-quadruplex DNA Motifs as Conserved Cis-Regulatory Elements in Human and Related Species”. Journal of Medicinal Chemistry51 (18), 5641‐5649. o. DOI:10.1021/jm800448a. PMID18767830.
H. Han, L. H. Hurley (2000. április 1.). „G-quadruplex DNA: a potential target for anti-cancer drug design”. Trends in Pharmacological Sciences21 (4), 136–142. o. DOI:10.1016/s0165-6147(00)01457-7. PMID10740289.
M. L. Bochman, K. Paeschke, V. A. Zakian (2012. november 1.). „DNA secondary structures: stability and function of G-quadruplex structures”. Nature Reviews. Genetics13 (11), 770–80. o. DOI:10.1038/nrg3296. PMID23032257. PMC3725559.
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008). „QuadBase: Genome-Wide Database of G4 DNA--occurrence and Conservation in Human, Chimpanzee, Mouse and Rat Promoters and 146 Microbes”. Nucleic Acids Research36 (Database), D381‐D385. o. DOI:10.1093/nar/gkm781. PMID17962308. PMC2238983.
P. Dhapola, S. Chowdhury (2016. július 1.). „QuadBase2: Web Server for Multiplexed Guanine Quadruplex Mining and Visualization”. Nucleic Acids Research44 (W1), W277‐W283. o. DOI:10.1093/nar/gkw425. PMID27185890. PMC4987949.
D. Rhodes, H. J. Lipps (2015. október 1.). „G-quadruplexes and their regulatory roles in biology”. Nucleic Acids Research43 (18), 8627–37. o. DOI:10.1093/nar/gkv862. PMID26350216. PMC4605312.
Gellert M, Lipsett MN, Davies DR (1962. december 1.). „Helix formation by guanylic acid”. Proceedings of the National Academy of Sciences of the United States of America48 (12), 2013–2018. o. DOI:10.1073/pnas.48.12.2013. PMID13947099. PMC221115.
Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987. december 1.). „Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs”. Cell51 (6), 899–908. o. DOI:10.1016/0092-8674(87)90577-0. PMID3690664.
(2010. október 10.) „Small-molecule-mediated G-quadruplex isolation from human cells”. Nature Chemistry2 (12), 1095–1098. o. DOI:10.1038/nchem.842. PMID21107376. PMC3119466.
(2012. február 5.) „Small-molecule–induced DNA damage identifies alternative DNA structures in human genes”. Nature Chemical Biology8 (3), 301–310. o. DOI:10.1038/nchembio.780. PMID22306580. PMC3433707.
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006). „Quadruplex DNA: sequence, topology and structure”. Nucleic Acids Research34 (19), 5402–15. o. DOI:10.1093/nar/gkl655. PMID17012276. PMC1636468.
Cao K, Ryvkin P, Johnson FB (2012. május 1.). „Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential”. Methods57 (1), 3–10. o. DOI:10.1016/j.ymeth.2012.05.002. PMID22652626. PMC3701776.
Kudlicki AS (2016). „G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome”. PLOS ONE11 (1), e0146174. o. DOI:10.1371/journal.pone.0146174. PMID26727593. PMC4699641.
Murat P, Balasubramanian S (2014. április 1.). „Existence and consequences of G-quadruplex structures in DNA”. Current Opinion in Genetics & Development25 (25), 22–29. o. DOI:10.1016/j.gde.2013.10.012. PMID24584093.
Miyoshi D, Karimata H, Sugimoto N (2006. június 1.). „Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions”. Journal of the American Chemical Society128 (24), 7957–63. o. DOI:10.1021/ja061267m. PMID16771510.
Zheng KW, Chen Z, Hao YH, Tan Z (2010. január 1.). „Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA”. Nucleic Acids Research38 (1), 327–38. o. DOI:10.1093/nar/gkp898. PMID19858105. PMC2800236.
Endoh T, Rode AB, Takahashi S, Kataoka Y, Kuwahara M, Sugimoto N (2016. február 1.). „Real-Time Monitoring of G-Quadruplex Formation during Transcription”. Analytical Chemistry88 (4), 1984–9. o. DOI:10.1021/acs.analchem.5b04396. PMID26810457.
Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z (2011. augusztus 1.). „G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase”. Nucleic Acids Research39 (14), 6229–37. o. DOI:10.1093/nar/gkr164. PMID21441540. PMC3152327.
Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001. július 1.). „In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei”. Proceedings of the National Academy of Sciences of the United States of America98 (15), 8572–7. o. DOI:10.1073/pnas.141229498. PMID11438689. PMC37477.
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005. október 1.). „Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo”. Nature Structural & Molecular Biology12 (10), 847–54. o. DOI:10.1038/nsmb982. PMID16142245.
Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD (2018. június 1.). „Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation”. The Journal of Biological Chemistry293 (24), 9473–9485. o. DOI:10.1074/jbc.RA118.002158. PMID29674319. PMC6005428.
Volná A, Bartas M, Karlický V, Nezval J, Kundrátová K, Pečinka P, Špunda V, Červeň J (2021. július 1.). „G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story”. International Journal of Molecular Sciences22 (14), 7381. o. DOI:10.3390/ijms22147381. PMID34299001. PMC8306923.
Simonsson T, Pecinka P, Kubista M (1998. március 1.). „DNA tetraplex formation in the control region of c-myc”. Nucleic Acids Research26 (5), 1167–72. o. DOI:10.1093/nar/26.5.1167. PMID9469822. PMC147388.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Huppert JL, Balasubramanian S (2006. december 14.). „G-quadruplexes in promoters throughout the human genome”. Nucleic Acids Research35 (2), 406–13. o. DOI:10.1093/nar/gkl1057. PMID17169996. PMC1802602.
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006. február 1.). „An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution”. Journal of the American Chemical Society128 (4), 1096–8. o. DOI:10.1021/ja055636a. PMID16433524. PMC2556172.
Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006. június 1.). „A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene”. Biochemistry45 (25), 7854–60. o. DOI:10.1021/bi0601510. PMID16784237. PMC2195898.
Huppert JL, Balasubramanian S (2005). „Prevalence of quadruplexes in the human genome”. Nucleic Acids Research33 (9), 2908–16. o. DOI:10.1093/nar/gki609. PMID15914667. PMC1140081.
Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. május 1.). „Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation”. Genome Research16 (5), 644–55. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
Kamath-Loeb A, Loeb LA, Fry M (2012). „The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures”. PLOS ONE7 (1), e30189. o. DOI:10.1371/journal.pone.0030189. PMID22272300. PMC3260238.
Vaughn JP, Creacy SD, Routh ED, Joyner-Butt C, Jenkins GS, Pauli S, Nagamine Y, Akman SA (2005. november 1.). „The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates”. The Journal of Biological Chemistry280 (46), 38117–20. o. DOI:10.1074/jbc.C500348200. PMID16150737.
Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S (2009. január 1.). „Metastases Suppressor NM23-H2 Interaction With G-quadruplex DNA Within c-MYC Promoter Nuclease Hypersensitive Element Induces c-MYC Expression”. Nucleic Acids Research37 (1), 172‐183. o. DOI:10.1093/nar/gkn919. PMID19033359. PMC2615625.
Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Ummanni R, Chowdhury S (2017. július 1.). „Epigenetic Suppression of Human Telomerase ( hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-quadruplex-dependent Fashion”. The Journal of Biological Chemistry292 (37), 15205‐15215. o. DOI:10.1074/jbc.M117.792077. PMID28717007. PMC5602382.
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S (2019. november 1.). „Telomere Repeat-Binding Factor 2 Binds Extensively to Extra-Telomeric G-quadruplexes and Regulates the Epigenetic Status of Several Gene Promoters”. The Journal of Biological Chemistry294 (47), 17709–17722. o. DOI:10.1074/jbc.RA119.008687. PMID31575660. PMC6879327.
Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013. március 1.). „Quantitative visualization of DNA G-quadruplex structures in human cells”. Nature Chemistry5 (3), 182–6. o. DOI:10.1038/nchem.1548. PMID23422559. PMC3622242.
Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR (2018. június 1.). „Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36” (angol nyelven). Nature558 (7710), 465–469. o. DOI:10.1038/s41586-018-0209-9. PMID29899445. PMC6261253.
Rice C, Skordalakes E (2016). „Structure and function of the telomeric CST complex”. Computational and Structural Biotechnology Journal14, 161–7. o. DOI:10.1016/j.csbj.2016.04.002. PMID27239262. PMC4872678.
Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020. május 1.). „Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome”. Proceedings of the National Academy of Sciences of the United States of America117 (21), 11409–11420. o. DOI:10.1073/pnas.1912355117. PMID32404420. PMC7260947.
Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014. június 1.). „Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease”. Neurobiology of Aging35 (6), 1293–1300. o. DOI:10.1016/j.neurobiolaging.2014.01.004. PMID24485507. PMC5576885.
Sun D, Hurley LH (2009. május 1.). „The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression”. Journal of Medicinal Chemistry52 (9), 2863–2874. o. DOI:10.1021/jm900055s. PMID19385599. PMC2757002.
Hill JW, Hazra TK, Izumi T, Mitra S (2001. január 1.). „Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair”. Nucleic Acids Research29 (2), 430–438. o. DOI:10.1093/nar/29.2.430. PMID11139613. PMC29662.
C. J. Burrows, J. G. Muller (1998. május 1.). „Oxidative Nucleobase Modifications Leading to Strand Scission”. Chemical Reviews98 (3), 1109–1152. o. DOI:10.1021/cr960421s. PMID11848927.
A. R. Poetsch (2020. január 7.). „The genomics of oxidative DNA damage, repair, and resulting mutagenesis”. Computational and Structural Biotechnology Journal18, 207–219. o. DOI:10.1016/j.csbj.2019.12.013. PMID31993111. PMC6974700.
Fleming AM, Burrows CJ (2017. október 1.). „8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA”. Organic & Biomolecular Chemistry15 (39), 8341–8353. o. DOI:10.1039/C7OB02096A. PMID28936535. PMC5636683.
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A (2019. szeptember 1.). „Nucleotide excision repair of abasic DNA lesions”. Nucleic Acids Research47 (16), 8537–8547. o. DOI:10.1093/nar/gkz558. PMID31226203. PMC6895268.
Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017. március 1.). „Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity”. Molecular and Cellular Biology37 (6). DOI:10.1128/mcb.00401-16. PMID27994014. PMC5335514.
Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003. december 1.). „Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene”. The EMBO Journal22 (23), 6299–6309. o. DOI:10.1093/emboj/cdg595. PMID14633989. PMC291836.
Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010. január 1.). „SIRT1 deacetylates APE1 and regulates cellular base excision repair”. Nucleic Acids Research38 (3), 832–845. o. DOI:10.1093/nar/gkp1039. PMID19934257. PMC2817463.
T. A. Brooks, S. Kendrick, L. Hurley (2010. szeptember 1.). „Making sense of G-quadruplex and i-motif functions in oncogene promoters”. The FEBS Journal277 (17), 3459–69. o. DOI:10.1111/j.1742-4658.2010.07759.x. PMID20670278. PMC2971675.
Ou TM, Lin J, Lu YJ, Hou JQ, Tan JH, Chen SH, Li Z, Li YP, Li D, Gu LQ, Huang ZS (2011. augusztus 1.). „Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex”. Journal of Medicinal Chemistry54 (16), 5671–9. o. DOI:10.1021/jm200062u. PMID21774525.
Sun D, Guo K, Rusche JJ, Hurley LH (2005. október 12.). „Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents”. Nucleic Acids Research33 (18), 6070–80. o. DOI:10.1093/nar/gki917. PMID16239639. PMC1266068.
Hussain T, Saha D, Purohit G, Mukherjee AK, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017. szeptember 1.). „Transcription Regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 Is Epigenetically Controlled Through the REST Repressor Complex”. Scientific Reports7 (1), 11541. o. DOI:10.1038/s41598-017-11177-1. PMID28912501. PMC5599563.
De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW (2005. december 1.). „Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter”. Biochemistry44 (49), 16341–50. o. DOI:10.1021/bi051618u. PMID16331995.
Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007. augusztus 1.). „Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene”. Journal of the American Chemical Society129 (33), 10220–8. o. DOI:10.1021/ja072185g. PMID17672459. PMC2566970.
Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007. november 26.). „Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4”. Nucleic Acids Research35 (22), 7698–713. o. DOI:10.1093/nar/gkm538. PMID17984069. PMC2190695.
Chilakamarthi U, Koteshwar D, Jinka S, Vamsi Krishna N, Sridharan K, Nagesh N, Giribabu L (2018. november 1.). „Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction”. Biochemistry57 (46), 6514–6527. o. DOI:10.1021/acs.biochem.8b00843. PMID30369235.
Ohnmacht SA, Marchetti C, Gunaratnam M, Besser RJ, Haider SM, Di Vita G, Lowe HL, Mellinas-Gomez M, Diocou S, Robson M, Šponer J, Islam B, Pedley RB, Hartley JA, Neidle S (2015. június 1.). „A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer”. Scientific Reports5, 11385. o. DOI:10.1038/srep11385. PMID26077929. PMC4468576.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Todd AK, Johnston M, Neidle S (2005). „Highly prevalent putative quadruplex sequence motifs in human DNA”. Nucleic Acids Research33 (9), 2901–7. o. DOI:10.1093/nar/gki553. PMID15914666. PMC1140077.
Guo K, Gokhale V, Hurley LH, Sun D (2008. augusztus 1.). „Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene”. Nucleic Acids Research36 (14), 4598–608. o. DOI:10.1093/nar/gkn380. PMID18614607. PMC2504309.
Mirkin SM, Lyamichev VI, Drushlyak KN, Dobrynin VN, Filippov SA, Frank-Kamenetskii MD (1987). „DNA H form requires a homopurine-homopyrimidine mirror repeat”. Nature330 (6147), 495–7. o. DOI:10.1038/330495a0. PMID2825028.
S. S. Smith (2010). „Evolutionary expansion of structurally complex DNA sequences”. Cancer Genomics & Proteomics7 (4), 207–15. o. PMID20656986.
H. Han, L. H. Hurley, M. Salazar (1999. január 1.). „A DNA polymerase stop assay for G-quadruplex-interactive compounds”. Nucleic Acids Research27 (2), 537–542. o. DOI:10.1093/nar/27.2.537. PMID9862977. PMC148212.
S- Paramasovan, I. Rujan, P. H. Bolton (2007. december 1.). „Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding”. Methods43 (4), 324–331. o. DOI:10.1016/j.ymeth.2007.02.009. PMID17967702.
Mergny JL, Phan AT, Lacroix L (1998. szeptember 1.). „Following G-quartet formation by UV-spectroscopy”. FEBS Letters435 (1), 74–78. o. DOI:10.1016/s0014-5793(98)01043-6. PMID9755862.
An N, Fleming AM, Middleton EG, Burrows CJ (2014. október 1.). „Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity”. Proceedings of the National Academy of Sciences of the United States of America111 (40), 14325–14331. o. DOI:10.1073/pnas.1415944111. PMID25225404. PMC4209999.
Bošković F, Zhu J, Chen K, Keyser UF (2019. november 1.). „Monitoring G-Quadruplex Formation with DNA Carriers and Solid-State Nanopores”. Nano Letters19 (11), 7996–8001. o. DOI:10.1021/acs.nanolett.9b03184. PMID31577148.
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM (2015. június 1.). „G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome”. FEBS Letters589 (14), 1653–68. o. DOI:10.1016/j.febslet.2015.05.003. PMID25979174.
Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002. június 1.). „The prevalence of frontotemporal dementia”. Neurology58 (11), 1615–21. o. DOI:10.1212/WNL.58.11.1615. PMID12058088.
Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, Stewart H, Finger E, Volkening K, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Knopman DS, Kretzschmar HA, Neumann M, Caselli RJ, White CL, Mackenzie IR, Petersen RC, Strong MJ, Miller BL, Boeve BF, Uitti RJ, Boylan KB, Wszolek ZK, Graff-Radford NR, Dickson DW, Ross OA, Rademakers R (2012. december 1.). „Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype”. Neurobiology of Aging33 (12), 2950.e5–7. o. DOI:10.1016/j.neurobiolaging.2012.07.005. PMID22840558. PMC3617405.
Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, Campbell T, Uphill J, Borg A, Fratta P, Orrell RW, Malaspina A, Rowe J, Brown J, Hodges J, Sidle K, Polke JM, Houlden H, Schott JM, Fox NC, Rossor MN, Tabrizi SJ, Isaacs AM, Hardy J, Warren JD, Collinge J, Mead S (2013. március 1.). „Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population”. American Journal of Human Genetics92 (3), 345–353. o. DOI:10.1016/j.ajhg.2013.01.011. PMID23434116. PMC3591848.
Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, Isaacs AM (2012. december 1.). „C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes”. Scientific Reports2, 1016. o. DOI:10.1038/srep01016. PMID23264878. PMC3527825.
Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE (2013. április 1.). „The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures”. The Journal of Biological Chemistry288 (14), 9860–9866. o. DOI:10.1074/jbc.C113.452532. PMID23423380. PMC3617286.
Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014. március 1.). „C9orf72 nucleotide repeat structures initiate molecular cascades of disease”. Nature507 (7491), 195–200. o. DOI:10.1038/nature13124. PMID24598541. PMC4046618.
Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001. november 1.). „Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function”. Cell107 (4), 489–499. o. DOI:10.1016/S0092-8674(01)00566-9. PMID11719189.
Ceman S, O'Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003. december 1.). „Phosphorylation influences the translation state of FMRP-associated polyribosomes”. Human Molecular Genetics12 (24), 3295–3305. o. DOI:10.1093/hmg/ddg350. PMID14570712.
Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H (2009. február 1.). „Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein”. The Journal of Biological Chemistry284 (7), 4255–4266. o. DOI:10.1074/jbc.M807354200. PMID19097999.
Pieretti M, Zhang FP, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991. augusztus 1.). „Absence of expression of the FMR-1 gene in fragile X syndrome”. Cell66 (4), 817–822. o. DOI:10.1016/0092-8674(91)90125-I. PMID1878973.
Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST (1992. szeptember 1.). „DNA methylation represses FMR-1 transcription in fragile X syndrome”. Human Molecular Genetics1 (6), 397–400. o. DOI:10.1093/hmg/1.6.397. PMID1301913.
S. Mizielinska, A. M. Isaacs (2014. október 1.). „C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?”. Current Opinion in Neurology27 (5), 515–523. o. DOI:10.1097/WCO.0000000000000130. PMID25188012. PMC4165481.
Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013. október 1.). „RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention”. Neuron80 (2), 415–28. o. DOI:10.1016/j.neuron.2013.10.015. PMID24139042. PMC4098943.
Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J (2013. november 1.). „Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration”. Proceedings of the National Academy of Sciences of the United States of America110 (47), E4530–9. o. DOI:10.1073/pnas.1318835110. PMID24170860. PMC3839752.
Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013. október 1.). „Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion”. Science Translational Medicine5 (208), 208ra149. o. DOI:10.1126/scitranslmed.3007529. PMID24154603. PMC4090945.
Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012. augusztus 1.). „Targeting nuclear RNA for in vivo correction of myotonic dystrophy”. Nature488 (7409), 111–5. o. DOI:10.1038/nature11362. PMID22859208. PMC4221572.
Lee JE, Bennett CF, Cooper TA (2012. március 1.). „RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1”. Proceedings of the National Academy of Sciences of the United States of America109 (11), 4221–6. o. DOI:10.1073/pnas.1117019109. PMID22371589. PMC3306674.
Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011. december 1.). „Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin”. Molecular Therapy19 (12), 2178–85. o. DOI:10.1038/mt.2011.201. PMID21971427. PMC3242664.
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010. november 1.). „Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat”. Biochemistry49 (47), 10166–78. o. DOI:10.1021/bi101208k. PMID21028906. PMC2991413.
Cogoi S, Paramasivam M, Filichev V, Géci I, Pedersen EB, Xodo LE (2009. január 1.). „Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells”. Journal of Medicinal Chemistry52 (2), 564–568. o. DOI:10.1021/jm800874t. PMID19099510.
Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE (2013. április 1.). „MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice”. Nucleic Acids Research41 (7), 4049–4064. o. DOI:10.1093/nar/gkt127. PMID23471001. PMC3627599.
Campbell NH, Patel M, Tofa AB, Ghosh R, Parkinson GN, Neidle S (2009. március 1.). „Selectivity in ligand recognition of G-quadruplex loops”. Biochemistry48 (8), 1675–80. o. DOI:10.1021/bi802233v. PMID19173611.
Ohnmacht SA, Neidle S (2014. június 1.). „Small-molecule quadruplex-targeted drug discovery”. Bioorganic & Medicinal Chemistry Letters24 (12), 2602–12. o. DOI:10.1016/j.bmcl.2014.04.029. PMID24814531.
Zamiri B, Reddy K, Macgregor RB, Pearson CE (2014. február 1.). „TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins”. The Journal of Biological Chemistry289 (8), 4653–9. o. DOI:10.1074/jbc.C113.502336. PMID24371143. PMC3931028.
ncbi.nlm.nih.gov
J. A. Capra, K. Paeschke, M. Singh, V. A. Zakian (2010. július 1.). „G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae”. PLOS Computational Biology6 (7), e1000861. o. DOI:10.1371/journal.pcbi.1000861. PMID20676380. PMC2908698.
Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (2017. március 1.). „A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1”. Journal of Visualized Experiments121 (121). DOI:10.3791/55496. PMID28362374. PMC5409278.
Rawal P, Kummarasetti VB, Ravindran R, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006). „Genome-wide Prediction of G4 DNA as Regulatory Motifs: Role in Escherichia Coli Global Regulation”. Genome Research16 (5), 644‐655. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
M. L. Bochman, K. Paeschke, V. A. Zakian (2012. november 1.). „DNA secondary structures: stability and function of G-quadruplex structures”. Nature Reviews. Genetics13 (11), 770–80. o. DOI:10.1038/nrg3296. PMID23032257. PMC3725559.
Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S (2008). „QuadBase: Genome-Wide Database of G4 DNA--occurrence and Conservation in Human, Chimpanzee, Mouse and Rat Promoters and 146 Microbes”. Nucleic Acids Research36 (Database), D381‐D385. o. DOI:10.1093/nar/gkm781. PMID17962308. PMC2238983.
P. Dhapola, S. Chowdhury (2016. július 1.). „QuadBase2: Web Server for Multiplexed Guanine Quadruplex Mining and Visualization”. Nucleic Acids Research44 (W1), W277‐W283. o. DOI:10.1093/nar/gkw425. PMID27185890. PMC4987949.
D. Rhodes, H. J. Lipps (2015. október 1.). „G-quadruplexes and their regulatory roles in biology”. Nucleic Acids Research43 (18), 8627–37. o. DOI:10.1093/nar/gkv862. PMID26350216. PMC4605312.
Gellert M, Lipsett MN, Davies DR (1962. december 1.). „Helix formation by guanylic acid”. Proceedings of the National Academy of Sciences of the United States of America48 (12), 2013–2018. o. DOI:10.1073/pnas.48.12.2013. PMID13947099. PMC221115.
(2010. október 10.) „Small-molecule-mediated G-quadruplex isolation from human cells”. Nature Chemistry2 (12), 1095–1098. o. DOI:10.1038/nchem.842. PMID21107376. PMC3119466.
(2012. február 5.) „Small-molecule–induced DNA damage identifies alternative DNA structures in human genes”. Nature Chemical Biology8 (3), 301–310. o. DOI:10.1038/nchembio.780. PMID22306580. PMC3433707.
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006). „Quadruplex DNA: sequence, topology and structure”. Nucleic Acids Research34 (19), 5402–15. o. DOI:10.1093/nar/gkl655. PMID17012276. PMC1636468.
Cao K, Ryvkin P, Johnson FB (2012. május 1.). „Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential”. Methods57 (1), 3–10. o. DOI:10.1016/j.ymeth.2012.05.002. PMID22652626. PMC3701776.
Kudlicki AS (2016). „G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome”. PLOS ONE11 (1), e0146174. o. DOI:10.1371/journal.pone.0146174. PMID26727593. PMC4699641.
Zheng KW, Chen Z, Hao YH, Tan Z (2010. január 1.). „Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA”. Nucleic Acids Research38 (1), 327–38. o. DOI:10.1093/nar/gkp898. PMID19858105. PMC2800236.
Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, Tan Z (2011. augusztus 1.). „G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase”. Nucleic Acids Research39 (14), 6229–37. o. DOI:10.1093/nar/gkr164. PMID21441540. PMC3152327.
Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Plückthun A (2001. július 1.). „In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei”. Proceedings of the National Academy of Sciences of the United States of America98 (15), 8572–7. o. DOI:10.1073/pnas.141229498. PMID11438689. PMC37477.
Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD (2018. június 1.). „Long repeating (TTAGGG)n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation”. The Journal of Biological Chemistry293 (24), 9473–9485. o. DOI:10.1074/jbc.RA118.002158. PMID29674319. PMC6005428.
Volná A, Bartas M, Karlický V, Nezval J, Kundrátová K, Pečinka P, Špunda V, Červeň J (2021. július 1.). „G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story”. International Journal of Molecular Sciences22 (14), 7381. o. DOI:10.3390/ijms22147381. PMID34299001. PMC8306923.
Simonsson T, Pecinka P, Kubista M (1998. március 1.). „DNA tetraplex formation in the control region of c-myc”. Nucleic Acids Research26 (5), 1167–72. o. DOI:10.1093/nar/26.5.1167. PMID9469822. PMC147388.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Huppert JL, Balasubramanian S (2006. december 14.). „G-quadruplexes in promoters throughout the human genome”. Nucleic Acids Research35 (2), 406–13. o. DOI:10.1093/nar/gkl1057. PMID17169996. PMC1802602.
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006. február 1.). „An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution”. Journal of the American Chemical Society128 (4), 1096–8. o. DOI:10.1021/ja055636a. PMID16433524. PMC2556172.
Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S, Balasubramanian S (2006. június 1.). „A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene”. Biochemistry45 (25), 7854–60. o. DOI:10.1021/bi0601510. PMID16784237. PMC2195898.
Huppert JL, Balasubramanian S (2005). „Prevalence of quadruplexes in the human genome”. Nucleic Acids Research33 (9), 2908–16. o. DOI:10.1093/nar/gki609. PMID15914667. PMC1140081.
Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006. május 1.). „Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation”. Genome Research16 (5), 644–55. o. DOI:10.1101/gr.4508806. PMID16651665. PMC1457047.
Kamath-Loeb A, Loeb LA, Fry M (2012). „The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures”. PLOS ONE7 (1), e30189. o. DOI:10.1371/journal.pone.0030189. PMID22272300. PMC3260238.
Thakur RK, Kumar P, Halder K, Verma A, Kar A, Parent JL, Basundra R, Kumar A, Chowdhury S (2009. január 1.). „Metastases Suppressor NM23-H2 Interaction With G-quadruplex DNA Within c-MYC Promoter Nuclease Hypersensitive Element Induces c-MYC Expression”. Nucleic Acids Research37 (1), 172‐183. o. DOI:10.1093/nar/gkn919. PMID19033359. PMC2615625.
Saha D, Singh A, Hussain T, Srivastava V, Sengupta S, Kar A, Dhapola P, Ummanni R, Chowdhury S (2017. július 1.). „Epigenetic Suppression of Human Telomerase ( hTERT) Is Mediated by the Metastasis Suppressor NME2 in a G-quadruplex-dependent Fashion”. The Journal of Biological Chemistry292 (37), 15205‐15215. o. DOI:10.1074/jbc.M117.792077. PMID28717007. PMC5602382.
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S (2019. november 1.). „Telomere Repeat-Binding Factor 2 Binds Extensively to Extra-Telomeric G-quadruplexes and Regulates the Epigenetic Status of Several Gene Promoters”. The Journal of Biological Chemistry294 (47), 17709–17722. o. DOI:10.1074/jbc.RA119.008687. PMID31575660. PMC6879327.
Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013. március 1.). „Quantitative visualization of DNA G-quadruplex structures in human cells”. Nature Chemistry5 (3), 182–6. o. DOI:10.1038/nchem.1548. PMID23422559. PMC3622242.
Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR (2018. június 1.). „Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36” (angol nyelven). Nature558 (7710), 465–469. o. DOI:10.1038/s41586-018-0209-9. PMID29899445. PMC6261253.
Rice C, Skordalakes E (2016). „Structure and function of the telomeric CST complex”. Computational and Structural Biotechnology Journal14, 161–7. o. DOI:10.1016/j.csbj.2016.04.002. PMID27239262. PMC4872678.
Roychoudhury S, Pramanik S, Harris HL, Tarpley M, Sarkar A, Spagnol G, Sorgen PL, Chowdhury D, Band V, Klinkebiel D, Bhakat KK (2020. május 1.). „Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome”. Proceedings of the National Academy of Sciences of the United States of America117 (21), 11409–11420. o. DOI:10.1073/pnas.1912355117. PMID32404420. PMC7260947.
Canugovi C, Shamanna RA, Croteau DL, Bohr VA (2014. június 1.). „Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease”. Neurobiology of Aging35 (6), 1293–1300. o. DOI:10.1016/j.neurobiolaging.2014.01.004. PMID24485507. PMC5576885.
Sun D, Hurley LH (2009. május 1.). „The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression”. Journal of Medicinal Chemistry52 (9), 2863–2874. o. DOI:10.1021/jm900055s. PMID19385599. PMC2757002.
Hill JW, Hazra TK, Izumi T, Mitra S (2001. január 1.). „Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair”. Nucleic Acids Research29 (2), 430–438. o. DOI:10.1093/nar/29.2.430. PMID11139613. PMC29662.
A. R. Poetsch (2020. január 7.). „The genomics of oxidative DNA damage, repair, and resulting mutagenesis”. Computational and Structural Biotechnology Journal18, 207–219. o. DOI:10.1016/j.csbj.2019.12.013. PMID31993111. PMC6974700.
Fleming AM, Burrows CJ (2017. október 1.). „8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA”. Organic & Biomolecular Chemistry15 (39), 8341–8353. o. DOI:10.1039/C7OB02096A. PMID28936535. PMC5636683.
Kitsera N, Rodriguez-Alvarez M, Emmert S, Carell T, Khobta A (2019. szeptember 1.). „Nucleotide excision repair of abasic DNA lesions”. Nucleic Acids Research47 (16), 8537–8547. o. DOI:10.1093/nar/gkz558. PMID31226203. PMC6895268.
Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK (2017. március 1.). „Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity”. Molecular and Cellular Biology37 (6). DOI:10.1128/mcb.00401-16. PMID27994014. PMC5335514.
Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S (2003. december 1.). „Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene”. The EMBO Journal22 (23), 6299–6309. o. DOI:10.1093/emboj/cdg595. PMID14633989. PMC291836.
Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung SB, Kim CS, Irani K (2010. január 1.). „SIRT1 deacetylates APE1 and regulates cellular base excision repair”. Nucleic Acids Research38 (3), 832–845. o. DOI:10.1093/nar/gkp1039. PMID19934257. PMC2817463.
T. A. Brooks, S. Kendrick, L. Hurley (2010. szeptember 1.). „Making sense of G-quadruplex and i-motif functions in oncogene promoters”. The FEBS Journal277 (17), 3459–69. o. DOI:10.1111/j.1742-4658.2010.07759.x. PMID20670278. PMC2971675.
Sun D, Guo K, Rusche JJ, Hurley LH (2005. október 12.). „Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents”. Nucleic Acids Research33 (18), 6070–80. o. DOI:10.1093/nar/gki917. PMID16239639. PMC1266068.
Hussain T, Saha D, Purohit G, Mukherjee AK, Sharma S, Sengupta S, Dhapola P, Maji B, Vedagopuram S, Horikoshi NT, Horikoshi N, Pandita RK, Bhattacharya S, Bajaj A, Riou JF, Pandita TK, Chowdhury S (2017. szeptember 1.). „Transcription Regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 Is Epigenetically Controlled Through the REST Repressor Complex”. Scientific Reports7 (1), 11541. o. DOI:10.1038/s41598-017-11177-1. PMID28912501. PMC5599563.
Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH (2007. augusztus 1.). „Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene”. Journal of the American Chemical Society129 (33), 10220–8. o. DOI:10.1021/ja072185g. PMID17672459. PMC2566970.
Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH (2007. november 26.). „Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4”. Nucleic Acids Research35 (22), 7698–713. o. DOI:10.1093/nar/gkm538. PMID17984069. PMC2190695.
Ohnmacht SA, Marchetti C, Gunaratnam M, Besser RJ, Haider SM, Di Vita G, Lowe HL, Mellinas-Gomez M, Diocou S, Robson M, Šponer J, Islam B, Pedley RB, Hartley JA, Neidle S (2015. június 1.). „A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer”. Scientific Reports5, 11385. o. DOI:10.1038/srep11385. PMID26077929. PMC4468576.
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002. szeptember 1.). „Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription”. Proceedings of the National Academy of Sciences of the United States of America99 (18), 11593–8. o. DOI:10.1073/pnas.182256799. PMID12195017. PMC129314.
Todd AK, Johnston M, Neidle S (2005). „Highly prevalent putative quadruplex sequence motifs in human DNA”. Nucleic Acids Research33 (9), 2901–7. o. DOI:10.1093/nar/gki553. PMID15914666. PMC1140077.
Guo K, Gokhale V, Hurley LH, Sun D (2008. augusztus 1.). „Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene”. Nucleic Acids Research36 (14), 4598–608. o. DOI:10.1093/nar/gkn380. PMID18614607. PMC2504309.
H. Han, L. H. Hurley, M. Salazar (1999. január 1.). „A DNA polymerase stop assay for G-quadruplex-interactive compounds”. Nucleic Acids Research27 (2), 537–542. o. DOI:10.1093/nar/27.2.537. PMID9862977. PMC148212.
An N, Fleming AM, Middleton EG, Burrows CJ (2014. október 1.). „Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity”. Proceedings of the National Academy of Sciences of the United States of America111 (40), 14325–14331. o. DOI:10.1073/pnas.1415944111. PMID25225404. PMC4209999.
Rutherford NJ, Heckman MG, Dejesus-Hernandez M, Baker MC, Soto-Ortolaza AI, Rayaprolu S, Stewart H, Finger E, Volkening K, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Knopman DS, Kretzschmar HA, Neumann M, Caselli RJ, White CL, Mackenzie IR, Petersen RC, Strong MJ, Miller BL, Boeve BF, Uitti RJ, Boylan KB, Wszolek ZK, Graff-Radford NR, Dickson DW, Ross OA, Rademakers R (2012. december 1.). „Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype”. Neurobiology of Aging33 (12), 2950.e5–7. o. DOI:10.1016/j.neurobiolaging.2012.07.005. PMID22840558. PMC3617405.
Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, Campbell T, Uphill J, Borg A, Fratta P, Orrell RW, Malaspina A, Rowe J, Brown J, Hodges J, Sidle K, Polke JM, Houlden H, Schott JM, Fox NC, Rossor MN, Tabrizi SJ, Isaacs AM, Hardy J, Warren JD, Collinge J, Mead S (2013. március 1.). „Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population”. American Journal of Human Genetics92 (3), 345–353. o. DOI:10.1016/j.ajhg.2013.01.011. PMID23434116. PMC3591848.
Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, Isaacs AM (2012. december 1.). „C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes”. Scientific Reports2, 1016. o. DOI:10.1038/srep01016. PMID23264878. PMC3527825.
Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE (2013. április 1.). „The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures”. The Journal of Biological Chemistry288 (14), 9860–9866. o. DOI:10.1074/jbc.C113.452532. PMID23423380. PMC3617286.
Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J (2014. március 1.). „C9orf72 nucleotide repeat structures initiate molecular cascades of disease”. Nature507 (7491), 195–200. o. DOI:10.1038/nature13124. PMID24598541. PMC4046618.
S. Mizielinska, A. M. Isaacs (2014. október 1.). „C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function?”. Current Opinion in Neurology27 (5), 515–523. o. DOI:10.1097/WCO.0000000000000130. PMID25188012. PMC4165481.
Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD (2013. október 1.). „RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention”. Neuron80 (2), 415–28. o. DOI:10.1016/j.neuron.2013.10.015. PMID24139042. PMC4098943.
Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, Jiang J, Watt AT, Chun S, Katz M, Qiu J, Sun Y, Ling SC, Zhu Q, Polymenidou M, Drenner K, Artates JW, McAlonis-Downes M, Markmiller S, Hutt KR, Pizzo DP, Cady J, Harms MB, Baloh RH, Vandenberg SR, Yeo GW, Fu XD, Bennett CF, Cleveland DW, Ravits J (2013. november 1.). „Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration”. Proceedings of the National Academy of Sciences of the United States of America110 (47), E4530–9. o. DOI:10.1073/pnas.1318835110. PMID24170860. PMC3839752.
Sareen D, O'Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013. október 1.). „Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion”. Science Translational Medicine5 (208), 208ra149. o. DOI:10.1126/scitranslmed.3007529. PMID24154603. PMC4090945.
Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF, Thornton CA (2012. augusztus 1.). „Targeting nuclear RNA for in vivo correction of myotonic dystrophy”. Nature488 (7409), 111–5. o. DOI:10.1038/nature11362. PMID22859208. PMC4221572.
Lee JE, Bennett CF, Cooper TA (2012. március 1.). „RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1”. Proceedings of the National Academy of Sciences of the United States of America109 (11), 4221–6. o. DOI:10.1073/pnas.1117019109. PMID22371589. PMC3306674.
Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011. december 1.). „Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin”. Molecular Therapy19 (12), 2178–85. o. DOI:10.1038/mt.2011.201. PMID21971427. PMC3242664.
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR (2010. november 1.). „Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat”. Biochemistry49 (47), 10166–78. o. DOI:10.1021/bi101208k. PMID21028906. PMC2991413.
Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE (2013. április 1.). „MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice”. Nucleic Acids Research41 (7), 4049–4064. o. DOI:10.1093/nar/gkt127. PMID23471001. PMC3627599.
Zamiri B, Reddy K, Macgregor RB, Pearson CE (2014. február 1.). „TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins”. The Journal of Biological Chemistry289 (8), 4653–9. o. DOI:10.1074/jbc.C113.502336. PMID24371143. PMC3931028.