Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C (1999. augusztus 1.). „Characterization of MAD2B and other mitotic spindle checkpoint genes”. Genomics58 (2), 181–187. o. DOI:10.1006/geno.1999.5831. PMID10366450.
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M (2015. április 30.). „Destabilization of pluripotency in the absence of Mad2l2”. Cell Cycle14 (10), 1596–1610. o. DOI:10.1080/15384101.2015.1026485. PMID25928475. PMC4614513.
Paniagua I, Tayeh Z, Falcone M, Hernández Pérez S, Cerutti A, Jacobs JJL (2022. szeptember 8.). „MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner”. Nat Commun13 (1), 5167. o. DOI:10.1038/s41467-022-32861-5. PMID36075897. PMC9458726.
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W (2018. február 13.). „MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation”. Mol Oncol12 (3), 391–405. o. DOI:10.1002/1878-0261.12173. PMID29360267. PMC5830628.
Li L, Jiang P, Hu W, Zou F, Li M, Rao T, Ruan Y, Yu W, Ning J, Cheng F (2024. március 21.). „AURKB promotes bladder cancer progression by deregulating the p53 DNA damage response pathway via MAD2L2”. J Transl Med22 (1), 295. o. DOI:10.1186/s12967-024-05099-6.. PMID38515112. PMC10956193.
Nelson KK, Schlöndorff J, Blobel CP (1999. november 1.). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.
Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (2000. február 1.). „A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2”. J. Biol. Chem.275 (6), 4391–4397. o. DOI:10.1074/jbc.275.6.4391. PMID10660610.
Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (2001. szeptember 1.). „Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7”. J. Biol. Chem.276 (38), 35644–35651. o. DOI:10.1074/jbc.M102051200. PMID11485998.
Nelson KK, Schlöndorff J, Blobel CP (1999). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.
nih.gov
pubmed.ncbi.nlm.nih.gov
Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C (1999. augusztus 1.). „Characterization of MAD2B and other mitotic spindle checkpoint genes”. Genomics58 (2), 181–187. o. DOI:10.1006/geno.1999.5831. PMID10366450.
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M (2015. április 30.). „Destabilization of pluripotency in the absence of Mad2l2”. Cell Cycle14 (10), 1596–1610. o. DOI:10.1080/15384101.2015.1026485. PMID25928475. PMC4614513.
Paniagua I, Tayeh Z, Falcone M, Hernández Pérez S, Cerutti A, Jacobs JJL (2022. szeptember 8.). „MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner”. Nat Commun13 (1), 5167. o. DOI:10.1038/s41467-022-32861-5. PMID36075897. PMC9458726.
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W (2018. február 13.). „MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation”. Mol Oncol12 (3), 391–405. o. DOI:10.1002/1878-0261.12173. PMID29360267. PMC5830628.
Li L, Jiang P, Hu W, Zou F, Li M, Rao T, Ruan Y, Yu W, Ning J, Cheng F (2024. március 21.). „AURKB promotes bladder cancer progression by deregulating the p53 DNA damage response pathway via MAD2L2”. J Transl Med22 (1), 295. o. DOI:10.1186/s12967-024-05099-6.. PMID38515112. PMC10956193.
Nelson KK, Schlöndorff J, Blobel CP (1999. november 1.). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.
Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (2000. február 1.). „A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2”. J. Biol. Chem.275 (6), 4391–4397. o. DOI:10.1074/jbc.275.6.4391. PMID10660610.
Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (2001. szeptember 1.). „Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7”. J. Biol. Chem.276 (38), 35644–35651. o. DOI:10.1074/jbc.M102051200. PMID11485998.
Nelson KK, Schlöndorff J, Blobel CP (1999). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M (2015. április 30.). „Destabilization of pluripotency in the absence of Mad2l2”. Cell Cycle14 (10), 1596–1610. o. DOI:10.1080/15384101.2015.1026485. PMID25928475. PMC4614513.
Paniagua I, Tayeh Z, Falcone M, Hernández Pérez S, Cerutti A, Jacobs JJL (2022. szeptember 8.). „MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner”. Nat Commun13 (1), 5167. o. DOI:10.1038/s41467-022-32861-5. PMID36075897. PMC9458726.
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W (2018. február 13.). „MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation”. Mol Oncol12 (3), 391–405. o. DOI:10.1002/1878-0261.12173. PMID29360267. PMC5830628.
Li L, Jiang P, Hu W, Zou F, Li M, Rao T, Ruan Y, Yu W, Ning J, Cheng F (2024. március 21.). „AURKB promotes bladder cancer progression by deregulating the p53 DNA damage response pathway via MAD2L2”. J Transl Med22 (1), 295. o. DOI:10.1186/s12967-024-05099-6.. PMID38515112. PMC10956193.
Nelson KK, Schlöndorff J, Blobel CP (1999. november 1.). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.
Nelson KK, Schlöndorff J, Blobel CP (1999). „Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta”. Biochem. J.343 (3), 673–680. o. DOI:10.1042/0264-6021:3430673. PMID10527948. PMC1220601.