Zachos, J.C., Kump, L.R. (2005). „Carbon cycle feedbacks and the initiation of Antarctic gaciation in the earliest Oligocene”. Global and Planetary Change47 (1), 51–66. o. DOI:10.1016/j.gloplacha.2005.01.001.
Krijgsman, W., Garcés, M.; Langereis, C.G.; Daams, R.; Van Dam, J.; Van Dr Meulen, A.J.; Agustí, J.; Cabrera, L. (1996). „A new chronology for the middle to late Miocene continental rcord in Spain”. Earth and Planetary Science Letters142 (3–4), 367–380. o. DOI:10.1016/0012-821X(96)00109-4.
(2014) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(1994) „Extinctions in the fossil record (and discussion)”. Philosophical Transactions of the Royal Society of London B344 (1307), 11–17. o. DOI:10.1098/rstb.1994.0045.
(2019) „The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary”. Science363 (6429), 866–870. o. DOI:10.1126/science.aav1446. PMID30792301.
(2007) „The Palynology of the Cerrejón Formation (Upper Paleocene) of Northern Colombia”. Palynology31, 159–183. o. DOI:10.1080/01916122.2007.9989641.
Bain, J. S. (1993). „Historical overview of exploration of Tertiary plays in the UK North Sea”. Petroleum Geology Conference4, 5–13. o. DOI:10.1144/0040005.
(2005) „3D seismic reflection mapping of the Silverpit multi-ringed crater, North Sea”. Geological Society of America Bulletin117 (3), 354–368. o. DOI:10.1130/B25591.1.
(2021. június 1.) „The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction” (angol nyelven). Science Advances7 (25), eabe6530. o. DOI:10.1126/sciadv.abe6530. ISSN2375-2548. PMID34144979. PMC8213223.
Brikiatis, L. (2014). „The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography”. Journal of Biogeography41 (6), 1036–1054. o. DOI:10.1111/jbi.12310.
Graham, A. (2018). „The role of land bridges, ancient environments, and migrations in the assembly of the North American flora”. Journal of Systematics and Evolution56 (5), 405–429. o. DOI:10.1111/jse.12302.
(2013) „Early Cretaceous to Paleocene Paleogeography of the Western Interior Seaway: The Interaction of Eustasy and Tectonism”. Wyoming Geological Association 68th Annual Field Conference. doi:10.13140/RG.2.1.4439.8801.
(2002) „The evolution of the North Atlantic Igneous Province and the opening of the NE Atlantic rift”. Geological Society of London197 (1), 1–13. o. DOI:10.1144/GSL.SP.2002.197.01.01.
(2006) „Regional uplift, gas hydrate dissociation and the origins of the Paleocene–Eocene Thermal Maximum”. Earth and Planetary Science Letters245 (1), 65–80. o. DOI:10.1016/j.epsl.2006.01.069.
Thomas, D. J. (2004). „Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval”. Nature430 (6995), 65–68. o. DOI:10.1038/nature02639. PMID15229597.
(2006) „Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period”. Nature439 (7072), 60–63. o. DOI:10.1038/nature04386. PMID16397495.
(1982) „Late Cretaceous–Paleogene paleogeography and paleocirculation: Evidence of north polar upwelling”. Palaeogeography, Palaeoclimatology, Palaeoecology40 (1–3), 135–165. o. DOI:10.1016/0031-0182(82)90087-6.
Akhmetiev, M. A. (2007). „Paleocene and Eocene floras of Russia and adjacent regions: Climatic conditions of their development”. Paleontological Journal41 (11), 1032–1039. o. DOI:10.1134/S0031030107110020.
(2009) „Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution”. Geologica Acta7 (1), 297–309. o. DOI:10.1344/105.000000278.
(2013) „Climate sensitivity, sea level and atmospheric carbon dioxide”. Philosophical Transactions of the Royal Society A371 (2001), 20120294. o. DOI:10.1098/rsta.2012.0294. PMID24043864. PMC3785813.
(2003) „Ecological development of acarininids (planktonic foraminifera) and hydrographic evolution of Paleocene surface waters”. Geological Society of America, 223–238. o. DOI:10.1130/0-8137-2369-8.223.
Mass extinction, Data from: Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous–Palaeogene mass extinction. Dryad Digital Repository. DOI: 10.5061/dryad.v1265j8 (2019)
(2014. május 12.) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(2014) „Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification”. Nature Geoscience7 (4), 279–282. o. DOI:10.1038/ngeo2095.
(1998. szeptember 15.) „Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary”. Proceedings of the National Academy of Sciences95 (19), 11028–11029. o. DOI:10.1073/pnas.95.19.11028. PMID9736679. PMC33889.
(2015) „The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean)”. PLOS ONE10 (11), e0141644. o. DOI:10.1371/journal.pone.0141644. PMID26606656. PMC4659543.
(2015) „Paleoochna tiffneyi gen. et sp. nov. (Ochnaceae) from the Late Paleocene Almont/Beicegel Creek Flora, North Dakota, USA”. International Journal of Plant Sciences176 (9), 892–900. o. DOI:10.1086/683275.
(2014) „The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: A template for other extinction events”. Global and Planetary Change122, 24–49. o. DOI:10.1016/j.gloplacha.2014.07.014.
(2001) „Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike”. Science294 (5547), 1700–1702. o. DOI:10.1126/science.1064706. PMID11721051.
(2002) „A Tropical Rainforest in Colorado 1.4 Million Years After the Cretaceous–Tertiary Boundary”. Science296 (5577), 2379–2383. o. DOI:10.1126/science.1072102. PMID12089439.
(2016) „The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae”. Scientific Reports6, e27259. o. DOI:10.1038/srep27259. PMID27251635. PMC4890112.
(2009) „Structure, Biomass, and Productivity of a Late Paleocene Arctic Forest”. Proceedings of the Academy of Natural Sciences of Philadelphia158 (1), 107–127. o. DOI:10.1635/053.158.0106.
(2016) „Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary”. Proceedings of the Royal Society B283 (1832), 20160256. o. DOI:10.1098/rspb.2016.0256. PMC4920311.
(1999) „A new specimen of Ankalagon (Mammalia, Mesonychia) and evidence of sexual dimorphism in mesonychians”. Journal of Vertebrate Paleontology20 (2), 387–393. o. DOI:[0387:ANSOAM2.0.CO;2 10.1671/0272-4634(2000)020[0387:ANSOAM]2.0.CO;2].
(2017) „Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction”. Proceedings of the National Academy of Sciences114 (30), 8047–8052. o. DOI:10.1073/pnas.1700188114. PMID28696285. PMC5544281.
(1981) „The Ogygoptyngidae, a new family of owls from the Paleocene of North America”. Alcheringa: An Australasian Journal of Palaeontology5 (2), 95–102. o. DOI:10.1080/03115518108565424.
(2011) „Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary”. Proceedings of the National Academy of Sciences108 (37), 15253–15257. o. DOI:10.1073/pnas.1110395108. PMID21914849. PMC3174646.
(2018) „Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary”. PLOS Biology16 (3), e2001663. o. DOI:10.1371/journal.pbio.2001663. PMID29534059. PMC5849296.
(2014) „Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems”. Naturwissenschaften101 (4), 313–322. o. DOI:10.1007/s00114-014-1158-2. PMID24563098.
(1986) „Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation”. Science232 (4750), 629–633. o. DOI:10.1126/science.232.4750.629. PMID17781415.
(2012) „Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary”. Proceedings of the National Academy of Sciences109 (52), 21396–21401. o. DOI:10.1073/pnas.1211526110. PMID23236177. PMC3535637.
Erickson, B. R. (2007). „Crocodile and Arthropod Tracks from the Late Paleocene Wannagan Creek Fauna of North Dakota, USA”. Ichnos12 (4), 303–308. o. DOI:10.1080/1042094050031111.
(2013) „Evolutionary origin of the Scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families”. PLOS ONE8 (9), e73535. o. DOI:10.1371/journal.pone.0073535. PMID24023883. PMC3762723.
(2015) „New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction”. Proceedings of the National Academy of Sciences112 (28), 8537–8542. o. DOI:10.1073/pnas.1504985112. PMID26124114. PMC4507219.
(2008) „Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum”. Proceedings of the National Academy of Sciences105 (6), 1960–1964. o. DOI:10.1073/pnas.0708646105. PMID18268338. PMC2538865.
(2000) „Amber from Upper Cretaceous through Paleocene strata of the Hanna Basin, Wyoming, with evidence for source and taphonomy of fossil resins”. Rocky Mountain Geology35 (2), 163–204. o. DOI:10.2113/35.2.163.
(2014) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(2019) „The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary”. Science363 (6429), 866–870. o. DOI:10.1126/science.aav1446. PMID30792301.
(2021. június 1.) „The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction” (angol nyelven). Science Advances7 (25), eabe6530. o. DOI:10.1126/sciadv.abe6530. ISSN2375-2548. PMID34144979. PMC8213223.
Thomas, D. J. (2004). „Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval”. Nature430 (6995), 65–68. o. DOI:10.1038/nature02639. PMID15229597.
(2006) „Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period”. Nature439 (7072), 60–63. o. DOI:10.1038/nature04386. PMID16397495.
(2013) „Climate sensitivity, sea level and atmospheric carbon dioxide”. Philosophical Transactions of the Royal Society A371 (2001), 20120294. o. DOI:10.1098/rsta.2012.0294. PMID24043864. PMC3785813.
(2014. május 12.) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(1998. szeptember 15.) „Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary”. Proceedings of the National Academy of Sciences95 (19), 11028–11029. o. DOI:10.1073/pnas.95.19.11028. PMID9736679. PMC33889.
(2015) „The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean)”. PLOS ONE10 (11), e0141644. o. DOI:10.1371/journal.pone.0141644. PMID26606656. PMC4659543.
(2001) „Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike”. Science294 (5547), 1700–1702. o. DOI:10.1126/science.1064706. PMID11721051.
(2002) „A Tropical Rainforest in Colorado 1.4 Million Years After the Cretaceous–Tertiary Boundary”. Science296 (5577), 2379–2383. o. DOI:10.1126/science.1072102. PMID12089439.
(2016) „The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae”. Scientific Reports6, e27259. o. DOI:10.1038/srep27259. PMID27251635. PMC4890112.
(2017) „Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction”. Proceedings of the National Academy of Sciences114 (30), 8047–8052. o. DOI:10.1073/pnas.1700188114. PMID28696285. PMC5544281.
(2011) „Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary”. Proceedings of the National Academy of Sciences108 (37), 15253–15257. o. DOI:10.1073/pnas.1110395108. PMID21914849. PMC3174646.
(2018) „Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary”. PLOS Biology16 (3), e2001663. o. DOI:10.1371/journal.pbio.2001663. PMID29534059. PMC5849296.
(2014) „Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems”. Naturwissenschaften101 (4), 313–322. o. DOI:10.1007/s00114-014-1158-2. PMID24563098.
(1986) „Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation”. Science232 (4750), 629–633. o. DOI:10.1126/science.232.4750.629. PMID17781415.
(2012) „Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary”. Proceedings of the National Academy of Sciences109 (52), 21396–21401. o. DOI:10.1073/pnas.1211526110. PMID23236177. PMC3535637.
(2013) „Evolutionary origin of the Scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families”. PLOS ONE8 (9), e73535. o. DOI:10.1371/journal.pone.0073535. PMID24023883. PMC3762723.
(2015) „New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction”. Proceedings of the National Academy of Sciences112 (28), 8537–8542. o. DOI:10.1073/pnas.1504985112. PMID26124114. PMC4507219.
(2008) „Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum”. Proceedings of the National Academy of Sciences105 (6), 1960–1964. o. DOI:10.1073/pnas.0708646105. PMID18268338. PMC2538865.
ncbi.nlm.nih.gov
(2014) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(2021. június 1.) „The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction” (angol nyelven). Science Advances7 (25), eabe6530. o. DOI:10.1126/sciadv.abe6530. ISSN2375-2548. PMID34144979. PMC8213223.
(2013) „Climate sensitivity, sea level and atmospheric carbon dioxide”. Philosophical Transactions of the Royal Society A371 (2001), 20120294. o. DOI:10.1098/rsta.2012.0294. PMID24043864. PMC3785813.
(2014. május 12.) „Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proceedings of the National Academy of Sciences111 (21), 7537–7541. o. DOI:10.1073/pnas.1319253111. PMID24821785. PMC4040585.
(1998. szeptember 15.) „Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary”. Proceedings of the National Academy of Sciences95 (19), 11028–11029. o. DOI:10.1073/pnas.95.19.11028. PMID9736679. PMC33889.
(2015) „The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean)”. PLOS ONE10 (11), e0141644. o. DOI:10.1371/journal.pone.0141644. PMID26606656. PMC4659543.
(2016) „The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae”. Scientific Reports6, e27259. o. DOI:10.1038/srep27259. PMID27251635. PMC4890112.
(2016) „Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary”. Proceedings of the Royal Society B283 (1832), 20160256. o. DOI:10.1098/rspb.2016.0256. PMC4920311.
(2017) „Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction”. Proceedings of the National Academy of Sciences114 (30), 8047–8052. o. DOI:10.1073/pnas.1700188114. PMID28696285. PMC5544281.
(2011) „Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary”. Proceedings of the National Academy of Sciences108 (37), 15253–15257. o. DOI:10.1073/pnas.1110395108. PMID21914849. PMC3174646.
(2018) „Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary”. PLOS Biology16 (3), e2001663. o. DOI:10.1371/journal.pbio.2001663. PMID29534059. PMC5849296.
(2012) „Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary”. Proceedings of the National Academy of Sciences109 (52), 21396–21401. o. DOI:10.1073/pnas.1211526110. PMID23236177. PMC3535637.
(2013) „Evolutionary origin of the Scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families”. PLOS ONE8 (9), e73535. o. DOI:10.1371/journal.pone.0073535. PMID24023883. PMC3762723.
(2015) „New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction”. Proceedings of the National Academy of Sciences112 (28), 8537–8542. o. DOI:10.1073/pnas.1504985112. PMID26124114. PMC4507219.
(2008) „Sharply increased insect herbivory during the Paleocene–Eocene Thermal Maximum”. Proceedings of the National Academy of Sciences105 (6), 1960–1964. o. DOI:10.1073/pnas.0708646105. PMID18268338. PMC2538865.
Bergman, J.: Temperature of Ocean Water. Windows to the Universe, 2011. február 16. [2019. szeptember 25-i dátummal az eredetiből archiválva]. (Hozzáférés: 2019. október 4.)
Bergman, J.: Temperature of Ocean Water. Windows to the Universe, 2011. február 16. [2019. szeptember 25-i dátummal az eredetiből archiválva]. (Hozzáférés: 2019. október 4.)
worldcat.org
(2021. június 1.) „The Boltysh impact structure: An early Danian impact event during recovery from the K-Pg mass extinction” (angol nyelven). Science Advances7 (25), eabe6530. o. DOI:10.1126/sciadv.abe6530. ISSN2375-2548. PMID34144979. PMC8213223.