Peters JM, Franke WW, Kleinschmidt JA (1994. március 1.). „Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm”. The Journal of Biological Chemistry269 (10), 7709–18. o. DOI:10.1016/S0021-9258(17)37345-3. PMID8125997.
Nassif, Nicholas D. (2014. május 1.). „Slipping up: Partial substrate degradation by ATP-dependent proteases”. IUBMB Life66 (5), 309–317. o. DOI:10.1002/iub.1271. PMID24823973.
Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID264694. PMC393195.
Ciehanover A, Hod Y, Hershko A (1978. április 1.). „A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes”. Biochemical and Biophysical Research Communications81 (4), 1100–5. o. DOI:10.1016/0006-291X(78)91249-4. PMID666810.
Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID265581. PMC430507.
Ciechanover A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD”. Cell Death and Differentiation12 (9), 1167–77. o. DOI:10.1038/sj.cdd.4401691. PMID16094393.
Wilk S, Orlowski M (1980. november 1.). „Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme”. Journal of Neurochemistry35 (5), 1172–82. o. DOI:10.1111/j.1471-4159.1980.tb07873.x. PMID6778972.
Hershko A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Avram Hershko. Interview by CDD”. Cell Death and Differentiation12 (9), 1158–61. o. DOI:10.1038/sj.cdd.4401709. PMID16094391.
Kopp F, Steiner R, Dahlmann B, Kuehn L, Reinauer H (1986. augusztus 1.). „Size and shape of the multicatalytic proteinase from rat skeletal muscle”. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology872 (3), 253–60. o. DOI:10.1016/0167-4838(86)90278-5. PMID3524688.
Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995. április 1.). „Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution”. Science268 (5210), 533–9. o. DOI:10.1126/science.7725097. PMID7725097.
Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID30479383. PMC6370054.
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID17803938. PMC2083707.
Wilk S, Orlowski M (1983. március 1.). „Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex”. Journal of Neurochemistry40 (3), 842–9. o. DOI:10.1111/j.1471-4159.1983.tb08056.x. PMID6338156.
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997. október 1.). „The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing”. The Journal of Biological Chemistry272 (40), 25200–9. o. DOI:10.1074/jbc.272.40.25200. PMID9312134.
Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID26997268. PMC4828729.
Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID14739934. PMC1271798.
Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008. március 1.). „A multimeric assembly factor controls the formation of alternative 20S proteasomes”. Nature Structural & Molecular Biology15 (3), 237–44. o. DOI:10.1038/nsmb.1389. PMID18278055.
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999. szeptember 1.). „An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes”. The Journal of Biological Chemistry274 (37), 26008–14. o. DOI:10.1074/jbc.274.37.26008. PMID10473546.
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005. december 1.). „ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins”. Molecular Cell20 (5), 687–98. o. DOI:10.1016/j.molcel.2005.10.019. PMID16337593.
Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID17018291. PMC3951175.
Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002. április 1.). „A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal”. Nature416 (6882), 763–7. o. DOI:10.1038/416763a. PMID11961560.
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID22927375. PMC3443124.
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID22237024. PMC3285539.
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID22307589. PMC3277140.
Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Huang X, Luan B, Wu J, Shi Y (2016. szeptember 1.). „An atomic structure of the human 26S proteasome”. Nature Structural & Molecular Biology23 (9), 778–785. o. DOI:10.1038/nsmb.3273. PMID27428775.
Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID29636472. PMC5893597.
Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID24706844. PMC3992697.
Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID23589842. PMC3645540.
Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID23770819. PMC3712289.
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID28689658. PMC5580496.
Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001. június 1.). „The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release”. Molecular Cell7 (6), 1143–52. o. DOI:10.1016/S1097-2765(01)00274-X. PMID11430818.
Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005. május 1.). „The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions”. Molecular Cell18 (5), 589–99. o. DOI:10.1016/j.molcel.2005.04.016. PMID15916965.
Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV, Baumeister W, Jap BK (2006. július 1.). „Proteasome assembly triggers a switch required for active-site maturation”. Structure14 (7), 1179–88. o. DOI:10.1016/j.str.2006.05.019. PMID16843899.
Murata S, Yashiroda H, Tanaka K (2009. február 1.). „Molecular mechanisms of proteasome assembly”. Nature Reviews Molecular Cell Biology10 (2), 104–115. o. DOI:10.1038/nrm2630. PMID19165213.
Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson CV (2011. június 1.). „The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle”. Molecular Cell42 (5), 637–649. o. DOI:10.1016/j.molcel.2011.04.021. PMID21658604.
Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010. június 1.). „Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae”. Biochemical and Biophysical Research Communications396 (4), 1048–1053. o. DOI:10.1016/j.bbrc.2010.05.061. PMID20471955.
Haas AL, Warms JV, Hershko A, Rose IA (1982. március 1.). „Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation”. The Journal of Biological Chemistry257 (5), 2543–8. o. DOI:10.1016/S0021-9258(18)34958-5. PMID6277905.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID10619848. PMC1171781.
Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003. június 1.). „Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis”. The Plant Journal34 (6), 753–67. o. DOI:10.1046/j.1365-313X.2003.01768.x. PMID12795696.
Elsasser S, Finley D (2005. augusztus 1.). „Delivery of ubiquitinated substrates to protein-unfolding machines”. Nature Cell Biology7 (8), 742–9. o. DOI:10.1038/ncb0805-742. PMID16056265.
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012. október 1.). „The ubiquitin-proteasome system: central modifier of plant signalling”. The New Phytologist196 (1), 13–28. o. DOI:10.1111/j.1469-8137.2012.04266.x. PMID22897362.
Pickart CM, Fushman D (2004. december 1.). „Polyubiquitin chains: polymeric protein signals”. Current Opinion in Chemical Biology8 (6), 610–16. o. DOI:10.1016/j.cbpa.2004.09.009. PMID15556404.
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID19345192. PMC2668214.
Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID35477760. PMC9117149.
Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005. július 1.). „Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo”. Experimental Cell Research307 (2), 436–51. o. DOI:10.1016/j.yexcr.2005.03.031. PMID15950624.
Wenzel T, Baumeister W (1995. március 1.). „Conformational constraints in protein degradation by the 20S proteasome”. Nature Structural Biology2 (3), 199–204. o. DOI:10.1038/nsb0395-199. PMID7773788.
Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID21278740. PMC3129032.
van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID25220455. PMC4358326.
Smith DM, Benaroudj N, Goldberg A (2006. október 1.). „Proteasomes and their associated ATPases: a destructive combination”. Journal of Structural Biology156 (1), 72–83. o. DOI:10.1016/j.jsb.2006.04.012. PMID16919475.
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID16601692. PMC1440830.
Zhang M, Coffino P (2004. március 1.). „Repeat sequence of Epstein–Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing”. The Journal of Biological Chemistry279 (10), 8635–41. o. DOI:10.1074/jbc.M310449200. PMID14688254.
Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995. április 1.). „Proteasome from Thermoplasma acidophilum: a threonine protease”. Science268 (5210), 579–82. o. DOI:10.1126/science.7725107. PMID7725107.
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997. április 1.). „Structure of 20S proteasome from yeast at 2.4 A resolution”. Nature386 (6624), 463–71. o. DOI:10.1038/386463a0. PMID9087403.
Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanović S, Wolf DH, Huber R, Rammensee HG, Schild H (1998. október 1.). „Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants”. The Journal of Biological Chemistry273 (40), 25637–46. o. DOI:10.1074/jbc.273.40.25637. PMID9748229.
Voges D, Zwickl P, Baumeister W (1999). „The 26S proteasome: a molecular machine designed for controlled proteolysis”. Annual Review of Biochemistry68 (1), 1015–68. o. DOI:10.1146/annurev.biochem.68.1.1015. PMID10872471.
Rape M, Jentsch S (2002. május 1.). „Taking a bite: proteasomal protein processing”. Nature Cell Biology4 (5), E113–6. o. DOI:10.1038/ncb0502-e113. PMID11988749.
Rape M, Jentsch S (2004. november 1.). „Productive RUPture: activation of transcription factors by proteasomal processing”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1695 (1–3), 209–13. o. DOI:10.1016/j.bbamcr.2004.09.022. PMID15571816.
Asher G, Reuven N, Shaul Y (2006. augusztus 1.). „20S proteasomes and protein degradation "by default"”. BioEssays28 (8), 844–9. o. DOI:10.1002/bies.20447. PMID16927316.
Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID12660156. PMC152902.
Asher G, Shaul Y (2005. augusztus 1.). „p53 proteasomal degradation: poly-ubiquitination is not the whole story”. Cell Cycle4 (8), 1015–8. o. DOI:10.4161/cc.4.8.1900. PMID16082197.
Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003. január 1.). „Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome”. The Journal of Biological Chemistry278 (1), 311–8. o. DOI:10.1074/jbc.M206279200. PMID12401807.
Gille C, Goede A, Schlöetelburg C, Preissner R, Kloetzel PM, Göbel UB, Frömmel C (2003. március 1.). „A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome”. Journal of Molecular Biology326 (5), 1437–48. o. DOI:10.1016/S0022-2836(02)01470-5. PMID12595256.
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999). „The proteasome”. Annual Review of Biophysics and Biomolecular Structure28 (1), 295–317. o. DOI:10.1146/annurev.biophys.28.1.295. PMID10410804.
Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006. augusztus 1.). „Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos”. Cell Cycle5 (15), 1687–98. o. DOI:10.4161/cc.5.15.3123. PMID16921258.
Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID16782009. PMC2749311.
Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004. március 1.). „Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase”. Nature428 (6979), 190–3. o. DOI:10.1038/nature02330. PMID15014502.
Higashitsuji H, Liu Y, Mayer RJ, Fujita J (2005. október 1.). „The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation”. Cell Cycle4 (10), 1335–7. o. DOI:10.4161/cc.4.10.2107. PMID16177571.
Dharmasiri S, Estelle M (2002). „The role of regulated protein degradation in auxin response”. Plant Molecular Biology49 (3–4), 401–9. o. DOI:10.1023/A:1015203013208. PMID12036263.
Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID15889151. PMC1142592.
Haas AL, Baboshina O, Williams B, Schwartz LM (1995. április 1.). „Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle”. The Journal of Biological Chemistry270 (16), 9407–12. o. DOI:10.1074/jbc.270.16.9407. PMID7721865.
Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C (1990. október 1.). „Activation of polyubiquitin gene expression during developmentally programmed cell death”. Neuron5 (4), 411–9. o. DOI:10.1016/0896-6273(90)90080-Y. PMID2169771.
Löw P, Bussell K, Dawson SP, Billett MA, Mayer RJ, Reynolds SE (1997. január 1.). „Expression of a 26S proteasome ATPase subunit, MS73, in muscles that undergo developmentally programmed cell death, and its control by ecdysteroid hormones in the insect Manduca sexta”. FEBS Letters400 (3), 345–9. o. DOI:10.1016/S0014-5793(96)01413-5. PMID9009228.
Pitzer F, Dantes A, Fuchs T, Baumeister W, Amsterdam A (1996. szeptember 1.). „Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death”. FEBS Letters394 (1), 47–50. o. DOI:10.1016/0014-5793(96)00920-9. PMID8925925.
Orlowski RZ (1999. április 1.). „The role of the ubiquitin-proteasome pathway in apoptosis”. Cell Death and Differentiation6 (4), 303–13. o. DOI:10.1038/sj.cdd.4400505. PMID10381632.
Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006. november 1.). „Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties”. Cell Cycle5 (22), 2592–2601. o. DOI:10.4161/cc.5.22.3448. PMID17106261.
Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID17065559. PMC1751312.
Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005. november 1.). „Regulation of the cytoplasmic quality control protein degradation pathway by BAG2”. The Journal of Biological Chemistry280 (46), 38673–81. o. DOI:10.1074/jbc.M507986200. PMID16169850.
Bader N, Grune T (2006). „Protein oxidation and proteolysis”. Biological Chemistry387 (10–11), 1351–5. o. DOI:10.1515/BC.2006.169. PMID17081106.
McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006. május 1.). „Proteasomal dysfunction in sporadic Parkinson's disease”. Neurology66 (10 Suppl 4), S37–49. o. DOI:10.1212/01.wnl.0000221745.58886.2e. PMID16717251.
Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006). „alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress”. Journal of Molecular Neuroscience28 (2), 161–78. o. DOI:10.1385/JMN:28:2:161. PMID16679556.
Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007. június 1.). „Regulation of CD8+ T cell development by thymus-specific proteasomes”. Science316 (5829), 1349–53. o. DOI:10.1126/science.1141915. PMID17540904.
Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID11350924. PMC125470.
Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID21045130. PMC2993423.
Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995. május 1.). „Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin”. Science268 (5211), 726–31. o. DOI:10.1126/science.7732382. PMID7732382.
Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, Goy A (2006. október 1.). „Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma”. Journal of Clinical Oncology24 (30), 4867–74. o. DOI:10.1200/JCO.2006.07.9665. PMID17001068.
Jakob C, Egerer K, Liebisch P, Türkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O (2007. március 1.). „Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma”. Blood109 (5), 2100–5. o. DOI:10.1182/blood-2006-04-016360. PMID17095627.
Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP (2001). „26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer”. Journal of Cellular Biochemistry82 (1), 110–22. o. DOI:10.1002/jcb.1150. PMID11400168.
Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004. január 1.). „The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts”. Molecular Cancer Therapeutics3 (1), 59–70. o. DOI:10.1158/1535-7163.59.3.1. PMID14749476.
Schenkein D (2002. június 1.). „Proteasome inhibitors in the treatment of B-cell malignancies”. Clinical Lymphoma3 (1), 49–55. o. DOI:10.3816/CLM.2002.n.011. PMID12141956.
O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD (2005. február 1.). „Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma”. Journal of Clinical Oncology23 (4), 676–84. o. DOI:10.1200/JCO.2005.02.050. PMID15613699.
Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, Bostrom BC (2012. július 1.). „Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study”. Blood120 (2), 285–90. o. DOI:10.1182/blood-2012-04-418640. PMID22653976.
Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA (2012. április 1.). „Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators”. Molecular and Cellular Endocrinology351 (2), 142–51. o. DOI:10.1016/j.mce.2012.01.003. PMID22273806.
Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M (1999. december 1.). „How an inhibitor of the HIV-I protease modulates proteasome activity”. The Journal of Biological Chemistry274 (50), 35734–40. o. DOI:10.1074/jbc.274.50.35734. PMID10585454.
Laurent N, de Boüard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004. február 1.). „Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo”. Molecular Cancer Therapeutics3 (2), 129–36. o. DOI:10.1158/1535-7163.129.3.2. PMID14985453.
Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999. augusztus 1.). „Proteasome inhibition: A novel mechanism to combat asthma”. The Journal of Allergy and Clinical Immunology104 (2 Pt 1), 294–300. o. DOI:10.1016/S0091-6749(99)70369-6. PMID10452747.
Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006. november 1.). „A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo”. Chemistry & Biology13 (11), 1217–26. o. DOI:10.1016/j.chembiol.2006.09.013. PMID17114003.
Goldberg AL, Stein R, Adams J (1995. augusztus 1.). „New insights into proteasome function: from archaebacteria to drug development”. Chemistry & Biology2 (8), 503–8. o. DOI:10.1016/1074-5521(95)90182-5. PMID9383453.
Sulistio YA, Heese K (2015. január 1.). „The Ubiquitin–Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease”. Molecular Neurobiology53 (2), 905–31. o. DOI:10.1007/s12035-014-9063-4. PMID25561438.
Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID25324717. PMC4179678.
Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID24380730. PMC4011959.
Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID25133688. PMC4241867.
Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID25651176. PMC4317573.
Karin M, Delhase M (2000. február 1.). „The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling”. Seminars in Immunology12 (1), 85–98. o. DOI:10.1006/smim.2000.0210. PMID10723801.
Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID25560147. PMC4886828.
Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (2000. július 1.). „Role of the proteasome in Alzheimer's disease”. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease1502 (1), 133–8. o. DOI:10.1016/s0925-4439(00)00039-9. PMID10899438.
Chung KK, Dawson VL, Dawson TM (2001. november 1.). „The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders”. Trends in Neurosciences24 (11 Suppl), S7–14. o. DOI:10.1016/s0166-2236(00)01998-6. PMID11881748.
Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002. július 1.). „Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia”. Acta Neuropathologica104 (1), 21–8. o. DOI:10.1007/s00401-001-0513-5. PMID12070660.
Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (1992. május 1.). „Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease”. Neuroscience Letters139 (1), 47–9. o. DOI:10.1016/0304-3940(92)90854-z. PMID1328965.
Mathews KD, Moore SA (2003. január 1.). „Limb-girdle muscular dystrophy”. Current Neurology and Neuroscience Reports3 (1), 78–85. o. DOI:10.1007/s11910-003-0042-9. PMID12507416.
Mayer RJ (2003. március 1.). „From neurodegeneration to neurohomeostasis: the role of ubiquitin”. Drug News & Perspectives16 (2), 103–8. o. DOI:10.1358/dnp.2003.16.2.829327. PMID12792671.
Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID23220331. PMC3774499.
Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID20159828. PMC2857348.
Powell SR (2006. július 1.). „The ubiquitin-proteasome system in cardiac physiology and pathology”. American Journal of Physiology. Heart and Circulatory Physiology291 (1), H1–H19. o. DOI:10.1152/ajpheart.00062.2006. PMID16501026.
Adams J (2003. április 1.). „Potential for proteasome inhibition in the treatment of cancer”. Drug Discovery Today8 (7), 307–15. o. DOI:10.1016/s1359-6446(03)02647-3. PMID12654543.
Ben-Neriah Y (2002. január 1.). „Regulatory functions of ubiquitination in the immune system”. Nature Immunology3 (1), 20–26. o. DOI:10.1038/ni0102-20. PMID11753406.
Peters JM, Franke WW, Kleinschmidt JA (1994. március 1.). „Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm”. The Journal of Biological Chemistry269 (10), 7709–18. o. DOI:10.1016/S0021-9258(17)37345-3. PMID8125997.
Nassif, Nicholas D. (2014. május 1.). „Slipping up: Partial substrate degradation by ATP-dependent proteases”. IUBMB Life66 (5), 309–317. o. DOI:10.1002/iub.1271. PMID24823973.
Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID264694. PMC393195.
Ciehanover A, Hod Y, Hershko A (1978. április 1.). „A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes”. Biochemical and Biophysical Research Communications81 (4), 1100–5. o. DOI:10.1016/0006-291X(78)91249-4. PMID666810.
Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID265581. PMC430507.
Ciechanover A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD”. Cell Death and Differentiation12 (9), 1167–77. o. DOI:10.1038/sj.cdd.4401691. PMID16094393.
Wilk S, Orlowski M (1980. november 1.). „Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme”. Journal of Neurochemistry35 (5), 1172–82. o. DOI:10.1111/j.1471-4159.1980.tb07873.x. PMID6778972.
Hershko A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Avram Hershko. Interview by CDD”. Cell Death and Differentiation12 (9), 1158–61. o. DOI:10.1038/sj.cdd.4401709. PMID16094391.
Kopp F, Steiner R, Dahlmann B, Kuehn L, Reinauer H (1986. augusztus 1.). „Size and shape of the multicatalytic proteinase from rat skeletal muscle”. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology872 (3), 253–60. o. DOI:10.1016/0167-4838(86)90278-5. PMID3524688.
Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995. április 1.). „Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution”. Science268 (5210), 533–9. o. DOI:10.1126/science.7725097. PMID7725097.
Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID30479383. PMC6370054.
Wang J, Maldonado MA (2006. augusztus 1.). „The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases”. Cellular & Molecular Immunology3 (4), 255–61. o. PMID16978533.
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID17803938. PMC2083707.
Wilk S, Orlowski M (1983. március 1.). „Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex”. Journal of Neurochemistry40 (3), 842–9. o. DOI:10.1111/j.1471-4159.1983.tb08056.x. PMID6338156.
Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997. október 1.). „The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing”. The Journal of Biological Chemistry272 (40), 25200–9. o. DOI:10.1074/jbc.272.40.25200. PMID9312134.
Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID26997268. PMC4828729.
Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID14739934. PMC1271798.
Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008. március 1.). „A multimeric assembly factor controls the formation of alternative 20S proteasomes”. Nature Structural & Molecular Biology15 (3), 237–44. o. DOI:10.1038/nsmb.1389. PMID18278055.
Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999. szeptember 1.). „An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes”. The Journal of Biological Chemistry274 (37), 26008–14. o. DOI:10.1074/jbc.274.37.26008. PMID10473546.
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005. december 1.). „ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins”. Molecular Cell20 (5), 687–98. o. DOI:10.1016/j.molcel.2005.10.019. PMID16337593.
Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID17018291. PMC3951175.
Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002. április 1.). „A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal”. Nature416 (6882), 763–7. o. DOI:10.1038/416763a. PMID11961560.
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID22927375. PMC3443124.
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID22237024. PMC3285539.
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID22307589. PMC3277140.
Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Huang X, Luan B, Wu J, Shi Y (2016. szeptember 1.). „An atomic structure of the human 26S proteasome”. Nature Structural & Molecular Biology23 (9), 778–785. o. DOI:10.1038/nsmb.3273. PMID27428775.
Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID29636472. PMC5893597.
Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID24706844. PMC3992697.
Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID23589842. PMC3645540.
Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID23770819. PMC3712289.
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID28689658. PMC5580496.
Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001. június 1.). „The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release”. Molecular Cell7 (6), 1143–52. o. DOI:10.1016/S1097-2765(01)00274-X. PMID11430818.
Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005. május 1.). „The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions”. Molecular Cell18 (5), 589–99. o. DOI:10.1016/j.molcel.2005.04.016. PMID15916965.
Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV, Baumeister W, Jap BK (2006. július 1.). „Proteasome assembly triggers a switch required for active-site maturation”. Structure14 (7), 1179–88. o. DOI:10.1016/j.str.2006.05.019. PMID16843899.
Murata S, Yashiroda H, Tanaka K (2009. február 1.). „Molecular mechanisms of proteasome assembly”. Nature Reviews Molecular Cell Biology10 (2), 104–115. o. DOI:10.1038/nrm2630. PMID19165213.
Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson CV (2011. június 1.). „The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle”. Molecular Cell42 (5), 637–649. o. DOI:10.1016/j.molcel.2011.04.021. PMID21658604.
Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010. június 1.). „Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae”. Biochemical and Biophysical Research Communications396 (4), 1048–1053. o. DOI:10.1016/j.bbrc.2010.05.061. PMID20471955.
Haas AL, Warms JV, Hershko A, Rose IA (1982. március 1.). „Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation”. The Journal of Biological Chemistry257 (5), 2543–8. o. DOI:10.1016/S0021-9258(18)34958-5. PMID6277905.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID10619848. PMC1171781.
Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003. június 1.). „Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis”. The Plant Journal34 (6), 753–67. o. DOI:10.1046/j.1365-313X.2003.01768.x. PMID12795696.
Elsasser S, Finley D (2005. augusztus 1.). „Delivery of ubiquitinated substrates to protein-unfolding machines”. Nature Cell Biology7 (8), 742–9. o. DOI:10.1038/ncb0805-742. PMID16056265.
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012. október 1.). „The ubiquitin-proteasome system: central modifier of plant signalling”. The New Phytologist196 (1), 13–28. o. DOI:10.1111/j.1469-8137.2012.04266.x. PMID22897362.
Pickart CM, Fushman D (2004. december 1.). „Polyubiquitin chains: polymeric protein signals”. Current Opinion in Chemical Biology8 (6), 610–16. o. DOI:10.1016/j.cbpa.2004.09.009. PMID15556404.
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID19345192. PMC2668214.
Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID35477760. PMC9117149.
Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005. július 1.). „Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo”. Experimental Cell Research307 (2), 436–51. o. DOI:10.1016/j.yexcr.2005.03.031. PMID15950624.
Wenzel T, Baumeister W (1995. március 1.). „Conformational constraints in protein degradation by the 20S proteasome”. Nature Structural Biology2 (3), 199–204. o. DOI:10.1038/nsb0395-199. PMID7773788.
Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID21278740. PMC3129032.
van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID25220455. PMC4358326.
Smith DM, Benaroudj N, Goldberg A (2006. október 1.). „Proteasomes and their associated ATPases: a destructive combination”. Journal of Structural Biology156 (1), 72–83. o. DOI:10.1016/j.jsb.2006.04.012. PMID16919475.
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID16601692. PMC1440830.
Zhang M, Coffino P (2004. március 1.). „Repeat sequence of Epstein–Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing”. The Journal of Biological Chemistry279 (10), 8635–41. o. DOI:10.1074/jbc.M310449200. PMID14688254.
Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995. április 1.). „Proteasome from Thermoplasma acidophilum: a threonine protease”. Science268 (5210), 579–82. o. DOI:10.1126/science.7725107. PMID7725107.
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997. április 1.). „Structure of 20S proteasome from yeast at 2.4 A resolution”. Nature386 (6624), 463–71. o. DOI:10.1038/386463a0. PMID9087403.
Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanović S, Wolf DH, Huber R, Rammensee HG, Schild H (1998. október 1.). „Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants”. The Journal of Biological Chemistry273 (40), 25637–46. o. DOI:10.1074/jbc.273.40.25637. PMID9748229.
Voges D, Zwickl P, Baumeister W (1999). „The 26S proteasome: a molecular machine designed for controlled proteolysis”. Annual Review of Biochemistry68 (1), 1015–68. o. DOI:10.1146/annurev.biochem.68.1.1015. PMID10872471.
Rape M, Jentsch S (2002. május 1.). „Taking a bite: proteasomal protein processing”. Nature Cell Biology4 (5), E113–6. o. DOI:10.1038/ncb0502-e113. PMID11988749.
Rape M, Jentsch S (2004. november 1.). „Productive RUPture: activation of transcription factors by proteasomal processing”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research1695 (1–3), 209–13. o. DOI:10.1016/j.bbamcr.2004.09.022. PMID15571816.
Asher G, Reuven N, Shaul Y (2006. augusztus 1.). „20S proteasomes and protein degradation "by default"”. BioEssays28 (8), 844–9. o. DOI:10.1002/bies.20447. PMID16927316.
Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID12660156. PMC152902.
Asher G, Shaul Y (2005. augusztus 1.). „p53 proteasomal degradation: poly-ubiquitination is not the whole story”. Cell Cycle4 (8), 1015–8. o. DOI:10.4161/cc.4.8.1900. PMID16082197.
Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003. január 1.). „Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome”. The Journal of Biological Chemistry278 (1), 311–8. o. DOI:10.1074/jbc.M206279200. PMID12401807.
Gille C, Goede A, Schlöetelburg C, Preissner R, Kloetzel PM, Göbel UB, Frömmel C (2003. március 1.). „A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome”. Journal of Molecular Biology326 (5), 1437–48. o. DOI:10.1016/S0022-2836(02)01470-5. PMID12595256.
Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999). „The proteasome”. Annual Review of Biophysics and Biomolecular Structure28 (1), 295–317. o. DOI:10.1146/annurev.biophys.28.1.295. PMID10410804.
Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006. augusztus 1.). „Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos”. Cell Cycle5 (15), 1687–98. o. DOI:10.4161/cc.5.15.3123. PMID16921258.
Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID16782009. PMC2749311.
Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004. március 1.). „Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase”. Nature428 (6979), 190–3. o. DOI:10.1038/nature02330. PMID15014502.
Higashitsuji H, Liu Y, Mayer RJ, Fujita J (2005. október 1.). „The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation”. Cell Cycle4 (10), 1335–7. o. DOI:10.4161/cc.4.10.2107. PMID16177571.
Dharmasiri S, Estelle M (2002). „The role of regulated protein degradation in auxin response”. Plant Molecular Biology49 (3–4), 401–9. o. DOI:10.1023/A:1015203013208. PMID12036263.
Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID15889151. PMC1142592.
Haas AL, Baboshina O, Williams B, Schwartz LM (1995. április 1.). „Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle”. The Journal of Biological Chemistry270 (16), 9407–12. o. DOI:10.1074/jbc.270.16.9407. PMID7721865.
Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C (1990. október 1.). „Activation of polyubiquitin gene expression during developmentally programmed cell death”. Neuron5 (4), 411–9. o. DOI:10.1016/0896-6273(90)90080-Y. PMID2169771.
Löw P, Bussell K, Dawson SP, Billett MA, Mayer RJ, Reynolds SE (1997. január 1.). „Expression of a 26S proteasome ATPase subunit, MS73, in muscles that undergo developmentally programmed cell death, and its control by ecdysteroid hormones in the insect Manduca sexta”. FEBS Letters400 (3), 345–9. o. DOI:10.1016/S0014-5793(96)01413-5. PMID9009228.
Pitzer F, Dantes A, Fuchs T, Baumeister W, Amsterdam A (1996. szeptember 1.). „Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death”. FEBS Letters394 (1), 47–50. o. DOI:10.1016/0014-5793(96)00920-9. PMID8925925.
Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999. június 1.). „Proteasome inhibitors: a novel class of potent and effective antitumor agents”. Cancer Research59 (11), 2615–22. o. PMID10363983.
Orlowski RZ (1999. április 1.). „The role of the ubiquitin-proteasome pathway in apoptosis”. Cell Death and Differentiation6 (4), 303–13. o. DOI:10.1038/sj.cdd.4400505. PMID10381632.
Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006. november 1.). „Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties”. Cell Cycle5 (22), 2592–2601. o. DOI:10.4161/cc.5.22.3448. PMID17106261.
Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID17065559. PMC1751312.
Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005. november 1.). „Regulation of the cytoplasmic quality control protein degradation pathway by BAG2”. The Journal of Biological Chemistry280 (46), 38673–81. o. DOI:10.1074/jbc.M507986200. PMID16169850.
Bader N, Grune T (2006). „Protein oxidation and proteolysis”. Biological Chemistry387 (10–11), 1351–5. o. DOI:10.1515/BC.2006.169. PMID17081106.
McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006. május 1.). „Proteasomal dysfunction in sporadic Parkinson's disease”. Neurology66 (10 Suppl 4), S37–49. o. DOI:10.1212/01.wnl.0000221745.58886.2e. PMID16717251.
Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006). „alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress”. Journal of Molecular Neuroscience28 (2), 161–78. o. DOI:10.1385/JMN:28:2:161. PMID16679556.
Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007. június 1.). „Regulation of CD8+ T cell development by thymus-specific proteasomes”. Science316 (5829), 1349–53. o. DOI:10.1126/science.1141915. PMID17540904.
Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID11350924. PMC125470.
Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID21045130. PMC2993423.
Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995. május 1.). „Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin”. Science268 (5211), 726–31. o. DOI:10.1126/science.7732382. PMID7732382.
Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, Goy A (2006. október 1.). „Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma”. Journal of Clinical Oncology24 (30), 4867–74. o. DOI:10.1200/JCO.2006.07.9665. PMID17001068.
Jakob C, Egerer K, Liebisch P, Türkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O (2007. március 1.). „Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma”. Blood109 (5), 2100–5. o. DOI:10.1182/blood-2006-04-016360. PMID17095627.
Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP (2001). „26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer”. Journal of Cellular Biochemistry82 (1), 110–22. o. DOI:10.1002/jcb.1150. PMID11400168.
Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004. január 1.). „The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts”. Molecular Cancer Therapeutics3 (1), 59–70. o. DOI:10.1158/1535-7163.59.3.1. PMID14749476.
Schenkein D (2002. június 1.). „Proteasome inhibitors in the treatment of B-cell malignancies”. Clinical Lymphoma3 (1), 49–55. o. DOI:10.3816/CLM.2002.n.011. PMID12141956.
O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD (2005. február 1.). „Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma”. Journal of Clinical Oncology23 (4), 676–84. o. DOI:10.1200/JCO.2005.02.050. PMID15613699.
Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, Bostrom BC (2012. július 1.). „Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study”. Blood120 (2), 285–90. o. DOI:10.1182/blood-2012-04-418640. PMID22653976.
Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA (2012. április 1.). „Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators”. Molecular and Cellular Endocrinology351 (2), 142–51. o. DOI:10.1016/j.mce.2012.01.003. PMID22273806.
Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M (1999. december 1.). „How an inhibitor of the HIV-I protease modulates proteasome activity”. The Journal of Biological Chemistry274 (50), 35734–40. o. DOI:10.1074/jbc.274.50.35734. PMID10585454.
Laurent N, de Boüard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004. február 1.). „Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo”. Molecular Cancer Therapeutics3 (2), 129–36. o. DOI:10.1158/1535-7163.129.3.2. PMID14985453.
Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999. augusztus 1.). „Proteasome inhibition: A novel mechanism to combat asthma”. The Journal of Allergy and Clinical Immunology104 (2 Pt 1), 294–300. o. DOI:10.1016/S0091-6749(99)70369-6. PMID10452747.
Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006. november 1.). „A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo”. Chemistry & Biology13 (11), 1217–26. o. DOI:10.1016/j.chembiol.2006.09.013. PMID17114003.
Goldberg AL, Stein R, Adams J (1995. augusztus 1.). „New insights into proteasome function: from archaebacteria to drug development”. Chemistry & Biology2 (8), 503–8. o. DOI:10.1016/1074-5521(95)90182-5. PMID9383453.
Sulistio YA, Heese K (2015. január 1.). „The Ubiquitin–Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease”. Molecular Neurobiology53 (2), 905–31. o. DOI:10.1007/s12035-014-9063-4. PMID25561438.
Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID25324717. PMC4179678.
Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID24380730. PMC4011959.
Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID25133688. PMC4241867.
Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID25651176. PMC4317573.
Karin M, Delhase M (2000. február 1.). „The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling”. Seminars in Immunology12 (1), 85–98. o. DOI:10.1006/smim.2000.0210. PMID10723801.
Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID25560147. PMC4886828.
Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (2000. július 1.). „Role of the proteasome in Alzheimer's disease”. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease1502 (1), 133–8. o. DOI:10.1016/s0925-4439(00)00039-9. PMID10899438.
Chung KK, Dawson VL, Dawson TM (2001. november 1.). „The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders”. Trends in Neurosciences24 (11 Suppl), S7–14. o. DOI:10.1016/s0166-2236(00)01998-6. PMID11881748.
Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002. július 1.). „Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia”. Acta Neuropathologica104 (1), 21–8. o. DOI:10.1007/s00401-001-0513-5. PMID12070660.
Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (1992. május 1.). „Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease”. Neuroscience Letters139 (1), 47–9. o. DOI:10.1016/0304-3940(92)90854-z. PMID1328965.
Mathews KD, Moore SA (2003. január 1.). „Limb-girdle muscular dystrophy”. Current Neurology and Neuroscience Reports3 (1), 78–85. o. DOI:10.1007/s11910-003-0042-9. PMID12507416.
Mayer RJ (2003. március 1.). „From neurodegeneration to neurohomeostasis: the role of ubiquitin”. Drug News & Perspectives16 (2), 103–8. o. DOI:10.1358/dnp.2003.16.2.829327. PMID12792671.
Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID23220331. PMC3774499.
Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID20159828. PMC2857348.
Powell SR (2006. július 1.). „The ubiquitin-proteasome system in cardiac physiology and pathology”. American Journal of Physiology. Heart and Circulatory Physiology291 (1), H1–H19. o. DOI:10.1152/ajpheart.00062.2006. PMID16501026.
Adams J (2003. április 1.). „Potential for proteasome inhibition in the treatment of cancer”. Drug Discovery Today8 (7), 307–15. o. DOI:10.1016/s1359-6446(03)02647-3. PMID12654543.
Ben-Neriah Y (2002. január 1.). „Regulatory functions of ubiquitination in the immune system”. Nature Immunology3 (1), 20–26. o. DOI:10.1038/ni0102-20. PMID11753406.
Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID264694. PMC393195.
Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID265581. PMC430507.
Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID30479383. PMC6370054.
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID17803938. PMC2083707.
Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID26997268. PMC4828729.
Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID14739934. PMC1271798.
Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID17018291. PMC3951175.
Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID22927375. PMC3443124.
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID22237024. PMC3285539.
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID22307589. PMC3277140.
Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID27791164. PMC5135334.
Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID29636472. PMC5893597.
Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID24706844. PMC3992697.
Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID23589842. PMC3645540.
Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID23770819. PMC3712289.
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID28689658. PMC5580496.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID10619848. PMC1171781.
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID19345192. PMC2668214.
Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID35477760. PMC9117149.
Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID21278740. PMC3129032.
van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID25220455. PMC4358326.
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID16601692. PMC1440830.
Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID12660156. PMC152902.
Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID16782009. PMC2749311.
Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID15889151. PMC1142592.
Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID17065559. PMC1751312.
Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID11350924. PMC125470.
Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID21045130. PMC2993423.
Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID25324717. PMC4179678.
Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID24380730. PMC4011959.
Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID25133688. PMC4241867.
Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID25651176. PMC4317573.
Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID25560147. PMC4886828.
Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID23220331. PMC3774499.
Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID20159828. PMC2857348.