Proteaszóma (Hungarian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Proteaszóma" in Hungarian language version.

refsWebsite
Global rank Hungarian rank
4th place
11th place
2nd place
8th place
6th place
14th place
301st place
242nd place
4,455th place
6,342nd place
5,849th place
4,703rd place
low place
low place
447th place
591st place

archive.org

doi.org

dx.doi.org

  • Peters JM, Franke WW, Kleinschmidt JA (1994. március 1.). „Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm”. The Journal of Biological Chemistry 269 (10), 7709–18. o. DOI:10.1016/S0021-9258(17)37345-3. PMID 8125997. 
  • Nassif, Nicholas D. (2014. május 1.). „Slipping up: Partial substrate degradation by ATP-dependent proteases”. IUBMB Life 66 (5), 309–317. o. DOI:10.1002/iub.1271. PMID 24823973. 
  • Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America 74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID 264694. PMC 393195. 
  • Ciehanover A, Hod Y, Hershko A (1978. április 1.). „A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes”. Biochemical and Biophysical Research Communications 81 (4), 1100–5. o. DOI:10.1016/0006-291X(78)91249-4. PMID 666810. 
  • Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America 74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID 265581. PMC 430507. 
  • Ciechanover A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD”. Cell Death and Differentiation 12 (9), 1167–77. o. DOI:10.1038/sj.cdd.4401691. PMID 16094393. 
  • Wilk S, Orlowski M (1980. november 1.). „Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme”. Journal of Neurochemistry 35 (5), 1172–82. o. DOI:10.1111/j.1471-4159.1980.tb07873.x. PMID 6778972. 
  • Arrigo AP, Tanaka, K, Goldberg F, Welch WJ (1988). „Identity of 19S prosome particle with the large multifunctional protease complex of mammalian cells”. Nature 331 (6152), 192–94. o. DOI:10.1038/331192a0. PMID 3277060. Tanaka K, Waxman L, Goldberg AL (1983. június 1.). „ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin”. The Journal of Cell Biology 96 (6), 1580–5. o. DOI:10.1083/jcb.96.6.1580. PMID 6304111. PMC 2112434. 
  • Hough R, Pratt G, Rechsteiner M (1987. június 1.). „Purification of two high molecular weight proteases from rabbit reticulocyte lysate”. The Journal of Biological Chemistry 262 (17), 8303–13. o. DOI:10.1016/S0021-9258(18)47564-3. PMID 3298229. 
  • Hershko A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Avram Hershko. Interview by CDD”. Cell Death and Differentiation 12 (9), 1158–61. o. DOI:10.1038/sj.cdd.4401709. PMID 16094391. 
  • Kopp F, Steiner R, Dahlmann B, Kuehn L, Reinauer H (1986. augusztus 1.). „Size and shape of the multicatalytic proteinase from rat skeletal muscle”. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 872 (3), 253–60. o. DOI:10.1016/0167-4838(86)90278-5. PMID 3524688. 
  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995. április 1.). „Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution”. Science 268 (5210), 533–9. o. DOI:10.1126/science.7725097. PMID 7725097. 
  • Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature 565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID 30479383. PMC 6370054. 
  • (2011. január 7.) „Proteasome activators”. Molecular Cell 41 (1), 8–19. o. DOI:10.1016/j.molcel.2010.12.020. PMID 21211719. PMC 3040445. 
  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell 27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID 17803938. PMC 2083707. 
  • Wilk S, Orlowski M (1983. március 1.). „Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex”. Journal of Neurochemistry 40 (3), 842–9. o. DOI:10.1111/j.1471-4159.1983.tb08056.x. PMID 6338156. 
  • Nandi D, Tahiliani P, Kumar A, Chandu D (2006. március 1.). „The ubiquitin-proteasome system”. Journal of Biosciences 31 (1), 137–55. o. DOI:10.1007/BF02705243. PMID 16595883. 
  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997. október 1.). „The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing”. The Journal of Biological Chemistry 272 (40), 25200–9. o. DOI:10.1074/jbc.272.40.25200. PMID 9312134. 
  • Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports 14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID 26997268. PMC 4828729. 
  • Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal 23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID 14739934. PMC 1271798. 
  • Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008. március 1.). „A multimeric assembly factor controls the formation of alternative 20S proteasomes”. Nature Structural & Molecular Biology 15 (3), 237–44. o. DOI:10.1038/nsmb.1389. PMID 18278055. 
  • Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999. szeptember 1.). „An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes”. The Journal of Biological Chemistry 274 (37), 26008–14. o. DOI:10.1074/jbc.274.37.26008. PMID 10473546. 
  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005. december 1.). „ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins”. Molecular Cell 20 (5), 687–98. o. DOI:10.1016/j.molcel.2005.10.019. PMID 16337593. 
  • Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell 24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID 17018291. PMC 3951175. 
  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002. április 1.). „A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal”. Nature 416 (6882), 763–7. o. DOI:10.1038/416763a. PMID 11961560. 
  • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID 22927375. PMC 3443124. 
  • Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature 482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID 22237024. PMC 3285539. 
  • Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America 109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID 22307589. PMC 3277140. 
  • Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Huang X, Luan B, Wu J, Shi Y (2016. szeptember 1.). „An atomic structure of the human 26S proteasome”. Nature Structural & Molecular Biology 23 (9), 778–785. o. DOI:10.1038/nsmb.3273. PMID 27428775. 
  • Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America 113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications 9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID 29636472. PMC 5893597. 
  • Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID 24706844. PMC 3992697. 
  • Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America 110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID 23589842. PMC 3645540. 
  • Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology 20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID 23770819. PMC 3712289. 
  • Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell 67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID 28689658. PMC 5580496. 
  • Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001. június 1.). „The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release”. Molecular Cell 7 (6), 1143–52. o. DOI:10.1016/S1097-2765(01)00274-X. PMID 11430818. 
  • Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005. május 1.). „The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions”. Molecular Cell 18 (5), 589–99. o. DOI:10.1016/j.molcel.2005.04.016. PMID 15916965. 
  • Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV, Baumeister W, Jap BK (2006. július 1.). „Proteasome assembly triggers a switch required for active-site maturation”. Structure 14 (7), 1179–88. o. DOI:10.1016/j.str.2006.05.019. PMID 16843899. 
  • Krüger E, Kloetzel PM, Enenkel C (2001). „20S proteasome biogenesis”. Biochimie 83 (3–4), 289–93. o. DOI:10.1016/S0300-9084(01)01241-X. PMID 11295488. 
  • Murata S, Yashiroda H, Tanaka K (2009. február 1.). „Molecular mechanisms of proteasome assembly”. Nature Reviews Molecular Cell Biology 10 (2), 104–115. o. DOI:10.1038/nrm2630. PMID 19165213. 
  • Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson CV (2011. június 1.). „The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle”. Molecular Cell 42 (5), 637–649. o. DOI:10.1016/j.molcel.2011.04.021. PMID 21658604. 
  • Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010. június 1.). „Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae”. Biochemical and Biophysical Research Communications 396 (4), 1048–1053. o. DOI:10.1016/j.bbrc.2010.05.061. PMID 20471955. 
  • Haas AL, Warms JV, Hershko A, Rose IA (1982. március 1.). „Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation”. The Journal of Biological Chemistry 257 (5), 2543–8. o. DOI:10.1016/S0021-9258(18)34958-5. PMID 6277905. 
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal 19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID 10619848. PMC 1171781. 
  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003. június 1.). „Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis”. The Plant Journal 34 (6), 753–67. o. DOI:10.1046/j.1365-313X.2003.01768.x. PMID 12795696. 
  • Elsasser S, Finley D (2005. augusztus 1.). „Delivery of ubiquitinated substrates to protein-unfolding machines”. Nature Cell Biology 7 (8), 742–9. o. DOI:10.1038/ncb0805-742. PMID 16056265. 
  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012. október 1.). „The ubiquitin-proteasome system: central modifier of plant signalling”. The New Phytologist 196 (1), 13–28. o. DOI:10.1111/j.1469-8137.2012.04266.x. PMID 22897362. 
  • Sharp PM, Li WH (1987). „Ubiquitin genes as a paradigm of concerted evolution of tandem repeats”. Journal of Molecular Evolution 25 (1), 58–64. o. DOI:10.1007/BF02100041. PMID 3041010. 
  • Pickart CM, Fushman D (2004. december 1.). „Polyubiquitin chains: polymeric protein signals”. Current Opinion in Chemical Biology 8 (6), 610–16. o. DOI:10.1016/j.cbpa.2004.09.009. PMID 15556404. 
  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell 137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID 19345192. PMC 2668214. 
  • Pickart CM (2000. november 1.). „Ubiquitin in chains”. Trends in Biochemical Sciences 25 (11), 544–8. o. DOI:10.1016/S0968-0004(00)01681-9. PMID 11084366. 
  • Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature 605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID 35477760. PMC 9117149. 
  • Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005. július 1.). „Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo”. Experimental Cell Research 307 (2), 436–51. o. DOI:10.1016/j.yexcr.2005.03.031. PMID 15950624. 
  • Wenzel T, Baumeister W (1995. március 1.). „Conformational constraints in protein degradation by the 20S proteasome”. Nature Structural Biology 2 (3), 199–204. o. DOI:10.1038/nsb0395-199. PMID 7773788. 
  • Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology 7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID 21278740. PMC 3129032. 
  • van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports 8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID 25220455. PMC 4358326. 
  • Smith DM, Benaroudj N, Goldberg A (2006. október 1.). „Proteasomes and their associated ATPases: a destructive combination”. Journal of Structural Biology 156 (1), 72–83. o. DOI:10.1016/j.jsb.2006.04.012. PMID 16919475. 
  • Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal 25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID 16601692. PMC 1440830. 
  • Zhang M, Coffino P (2004. március 1.). „Repeat sequence of Epstein–Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing”. The Journal of Biological Chemistry 279 (10), 8635–41. o. DOI:10.1074/jbc.M310449200. PMID 14688254. 
  • Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995. április 1.). „Proteasome from Thermoplasma acidophilum: a threonine protease”. Science 268 (5210), 579–82. o. DOI:10.1126/science.7725107. PMID 7725107. 
  • Coux O, Tanaka K, Goldberg AL (1996. november 29.). „Structure and functions of the 20S and 26S proteasomes”. Annual Review of Biochemistry 65, 801–47. o. DOI:10.1146/annurev.bi.65.070196.004101. PMID 8811196. 
  • Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997. április 1.). „Structure of 20S proteasome from yeast at 2.4 A resolution”. Nature 386 (6624), 463–71. o. DOI:10.1038/386463a0. PMID 9087403. 
  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanović S, Wolf DH, Huber R, Rammensee HG, Schild H (1998. október 1.). „Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants”. The Journal of Biological Chemistry 273 (40), 25637–46. o. DOI:10.1074/jbc.273.40.25637. PMID 9748229. 
  • Voges D, Zwickl P, Baumeister W (1999). „The 26S proteasome: a molecular machine designed for controlled proteolysis”. Annual Review of Biochemistry 68 (1), 1015–68. o. DOI:10.1146/annurev.biochem.68.1.1015. PMID 10872471. 
  • Rape M, Jentsch S (2002. május 1.). „Taking a bite: proteasomal protein processing”. Nature Cell Biology 4 (5), E113–6. o. DOI:10.1038/ncb0502-e113. PMID 11988749. 
  • Rape M, Jentsch S (2004. november 1.). „Productive RUPture: activation of transcription factors by proteasomal processing”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1695 (1–3), 209–13. o. DOI:10.1016/j.bbamcr.2004.09.022. PMID 15571816. 
  • Asher G, Reuven N, Shaul Y (2006. augusztus 1.). „20S proteasomes and protein degradation "by default"”. BioEssays 28 (8), 844–9. o. DOI:10.1002/bies.20447. PMID 16927316. 
  • Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal 22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID 12660156. PMC 152902. 
  • Asher G, Shaul Y (2005. augusztus 1.). „p53 proteasomal degradation: poly-ubiquitination is not the whole story”. Cell Cycle 4 (8), 1015–8. o. DOI:10.4161/cc.4.8.1900. PMID 16082197. 
  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003. január 1.). „Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome”. The Journal of Biological Chemistry 278 (1), 311–8. o. DOI:10.1074/jbc.M206279200. PMID 12401807. 
  • Gille C, Goede A, Schlöetelburg C, Preissner R, Kloetzel PM, Göbel UB, Frömmel C (2003. március 1.). „A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome”. Journal of Molecular Biology 326 (5), 1437–48. o. DOI:10.1016/S0022-2836(02)01470-5. PMID 12595256. 
  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999). „The proteasome”. Annual Review of Biophysics and Biomolecular Structure 28 (1), 295–317. o. DOI:10.1146/annurev.biophys.28.1.295. PMID 10410804. 
  • Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006. augusztus 1.). „Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos”. Cell Cycle 5 (15), 1687–98. o. DOI:10.4161/cc.5.15.3123. PMID 16921258. 
  • Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology 16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID 16782009. PMC 2749311. 
  • Havens CG, Ho A, Yoshioka N, Dowdy SF (2006. június 1.). „Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species”. Molecular and Cellular Biology 26 (12), 4701–11. o. DOI:10.1128/MCB.00303-06. PMID 16738333. PMC 1489138. 
  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004. március 1.). „Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase”. Nature 428 (6979), 190–3. o. DOI:10.1038/nature02330. PMID 15014502. 
  • Higashitsuji H, Liu Y, Mayer RJ, Fujita J (2005. október 1.). „The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation”. Cell Cycle 4 (10), 1335–7. o. DOI:10.4161/cc.4.10.2107. PMID 16177571. 
  • (2020-08-07020) „The proteasome controls ESCRT-III–mediated cell division in an archaeon”. Science 369 (6504), eaaz2532. o. DOI:10.1126/science.aaz2532. PMID 32764038. PMC 7116001. 
  • Dharmasiri S, Estelle M (2002). „The role of regulated protein degradation in auxin response”. Plant Molecular Biology 49 (3–4), 401–9. o. DOI:10.1023/A:1015203013208. PMID 12036263. 
  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal 24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID 15889151. PMC 1142592. 
  • Haas AL, Baboshina O, Williams B, Schwartz LM (1995. április 1.). „Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle”. The Journal of Biological Chemistry 270 (16), 9407–12. o. DOI:10.1074/jbc.270.16.9407. PMID 7721865. 
  • Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C (1990. október 1.). „Activation of polyubiquitin gene expression during developmentally programmed cell death”. Neuron 5 (4), 411–9. o. DOI:10.1016/0896-6273(90)90080-Y. PMID 2169771. 
  • Löw P, Bussell K, Dawson SP, Billett MA, Mayer RJ, Reynolds SE (1997. január 1.). „Expression of a 26S proteasome ATPase subunit, MS73, in muscles that undergo developmentally programmed cell death, and its control by ecdysteroid hormones in the insect Manduca sexta”. FEBS Letters 400 (3), 345–9. o. DOI:10.1016/S0014-5793(96)01413-5. PMID 9009228. 
  • Pitzer F, Dantes A, Fuchs T, Baumeister W, Amsterdam A (1996. szeptember 1.). „Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death”. FEBS Letters 394 (1), 47–50. o. DOI:10.1016/0014-5793(96)00920-9. PMID 8925925. 
  • Orlowski RZ (1999. április 1.). „The role of the ubiquitin-proteasome pathway in apoptosis”. Cell Death and Differentiation 6 (4), 303–13. o. DOI:10.1038/sj.cdd.4400505. PMID 10381632. 
  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006. november 1.). „Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties”. Cell Cycle 5 (22), 2592–2601. o. DOI:10.4161/cc.5.22.3448. PMID 17106261. 
  • Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell 18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID 17065559. PMC 1751312. 
  • Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005. november 1.). „Regulation of the cytoplasmic quality control protein degradation pathway by BAG2”. The Journal of Biological Chemistry 280 (46), 38673–81. o. DOI:10.1074/jbc.M507986200. PMID 16169850. 
  • Bader N, Grune T (2006). „Protein oxidation and proteolysis”. Biological Chemistry 387 (10–11), 1351–5. o. DOI:10.1515/BC.2006.169. PMID 17081106. 
  • Davies KJ (2003). „Degradation of oxidized proteins by the 20S proteasome”. Biochimie 83 (3–4), 301–10. o. DOI:10.1016/S0300-9084(01)01250-0. PMID 11295490. 
  • Lehman NL (2009. szeptember 1.). „The ubiquitin proteasome system in neuropathology”. Acta Neuropathologica 118 (3), 329–47. o. DOI:10.1007/s00401-009-0560-x. PMID 19597829. PMC 2716447. 
  • McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006. május 1.). „Proteasomal dysfunction in sporadic Parkinson's disease”. Neurology 66 (10 Suppl 4), S37–49. o. DOI:10.1212/01.wnl.0000221745.58886.2e. PMID 16717251. 
  • Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006). „alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress”. Journal of Molecular Neuroscience 28 (2), 161–78. o. DOI:10.1385/JMN:28:2:161. PMID 16679556. 
  • Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007. június 1.). „Regulation of CD8+ T cell development by thymus-specific proteasomes”. Science 316 (5829), 1349–53. o. DOI:10.1126/science.1141915. PMID 17540904. 
  • Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal 20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID 11350924. PMC 125470. 
  • Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America 107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID 21045130. PMC 2993423. 
  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995. május 1.). „Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin”. Science 268 (5211), 726–31. o. DOI:10.1126/science.7732382. PMID 7732382. 
  • Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, Goy A (2006. október 1.). „Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma”. Journal of Clinical Oncology 24 (30), 4867–74. o. DOI:10.1200/JCO.2006.07.9665. PMID 17001068. 
  • Jakob C, Egerer K, Liebisch P, Türkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O (2007. március 1.). „Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma”. Blood 109 (5), 2100–5. o. DOI:10.1182/blood-2006-04-016360. PMID 17095627. 
  • Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP (2001). „26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer”. Journal of Cellular Biochemistry 82 (1), 110–22. o. DOI:10.1002/jcb.1150. PMID 11400168. 
  • Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004. január 1.). „The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts”. Molecular Cancer Therapeutics 3 (1), 59–70. o. DOI:10.1158/1535-7163.59.3.1. PMID 14749476. 
  • Schenkein D (2002. június 1.). „Proteasome inhibitors in the treatment of B-cell malignancies”. Clinical Lymphoma 3 (1), 49–55. o. DOI:10.3816/CLM.2002.n.011. PMID 12141956. 
  • O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD (2005. február 1.). „Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma”. Journal of Clinical Oncology 23 (4), 676–84. o. DOI:10.1200/JCO.2005.02.050. PMID 15613699. 
  • Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, Bostrom BC (2012. július 1.). „Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study”. Blood 120 (2), 285–90. o. DOI:10.1182/blood-2012-04-418640. PMID 22653976. 
  • Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA (2012. április 1.). „Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators”. Molecular and Cellular Endocrinology 351 (2), 142–51. o. DOI:10.1016/j.mce.2012.01.003. PMID 22273806. 
  • Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M (1999. december 1.). „How an inhibitor of the HIV-I protease modulates proteasome activity”. The Journal of Biological Chemistry 274 (50), 35734–40. o. DOI:10.1074/jbc.274.50.35734. PMID 10585454. 
  • Laurent N, de Boüard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004. február 1.). „Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo”. Molecular Cancer Therapeutics 3 (2), 129–36. o. DOI:10.1158/1535-7163.129.3.2. PMID 14985453. 
  • Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH (2002. március 1.). „Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model”. The Journal of Clinical Investigation 109 (5), 671–9. o. DOI:10.1172/JCI12736. PMID 11877475. PMC 150886. 
  • Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999. augusztus 1.). „Proteasome inhibition: A novel mechanism to combat asthma”. The Journal of Allergy and Clinical Immunology 104 (2 Pt 1), 294–300. o. DOI:10.1016/S0091-6749(99)70369-6. PMID 10452747. 
  • Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006. november 1.). „A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo”. Chemistry & Biology 13 (11), 1217–26. o. DOI:10.1016/j.chembiol.2006.09.013. PMID 17114003. 
  • Kleiger G, Mayor T (2014. június 1.). „Perilous journey: a tour of the ubiquitin-proteasome system”. Trends in Cell Biology 24 (6), 352–9. o. DOI:10.1016/j.tcb.2013.12.003. PMID 24457024. PMC 4037451. 
  • Goldberg AL, Stein R, Adams J (1995. augusztus 1.). „New insights into proteasome function: from archaebacteria to drug development”. Chemistry & Biology 2 (8), 503–8. o. DOI:10.1016/1074-5521(95)90182-5. PMID 9383453. 
  • Sulistio YA, Heese K (2015. január 1.). „The Ubiquitin–Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease”. Molecular Neurobiology 53 (2), 905–31. o. DOI:10.1007/s12035-014-9063-4. PMID 25561438. 
  • Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience 7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID 25324717. PMC 4179678. 
  • Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology 71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID 24380730. PMC 4011959. 
  • Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling 21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID 25133688. PMC 4241867. 
  • Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism 21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID 25651176. PMC 4317573. 
  • Karin M, Delhase M (2000. február 1.). „The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling”. Seminars in Immunology 12 (1), 85–98. o. DOI:10.1006/smim.2000.0210. PMID 10723801. 
  • Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews 23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID 25560147. PMC 4886828. 
  • Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (2000. július 1.). „Role of the proteasome in Alzheimer's disease”. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1502 (1), 133–8. o. DOI:10.1016/s0925-4439(00)00039-9. PMID 10899438. 
  • Chung KK, Dawson VL, Dawson TM (2001. november 1.). „The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders”. Trends in Neurosciences 24 (11 Suppl), S7–14. o. DOI:10.1016/s0166-2236(00)01998-6. PMID 11881748. 
  • Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002. július 1.). „Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia”. Acta Neuropathologica 104 (1), 21–8. o. DOI:10.1007/s00401-001-0513-5. PMID 12070660. 
  • Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (1992. május 1.). „Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease”. Neuroscience Letters 139 (1), 47–9. o. DOI:10.1016/0304-3940(92)90854-z. PMID 1328965. 
  • Mathews KD, Moore SA (2003. január 1.). „Limb-girdle muscular dystrophy”. Current Neurology and Neuroscience Reports 3 (1), 78–85. o. DOI:10.1007/s11910-003-0042-9. PMID 12507416. 
  • Mayer RJ (2003. március 1.). „From neurodegeneration to neurohomeostasis: the role of ubiquitin”. Drug News & Perspectives 16 (2), 103–8. o. DOI:10.1358/dnp.2003.16.2.829327. PMID 12792671. 
  • Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology 304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID 23220331. PMC 3774499. 
  • Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation 121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID 20159828. PMC 2857348. 
  • Powell SR (2006. július 1.). „The ubiquitin-proteasome system in cardiac physiology and pathology”. American Journal of Physiology. Heart and Circulatory Physiology 291 (1), H1–H19. o. DOI:10.1152/ajpheart.00062.2006. PMID 16501026. 
  • Adams J (2003. április 1.). „Potential for proteasome inhibition in the treatment of cancer”. Drug Discovery Today 8 (7), 307–15. o. DOI:10.1016/s1359-6446(03)02647-3. PMID 12654543. 
  • Ben-Neriah Y (2002. január 1.). „Regulatory functions of ubiquitination in the immune system”. Nature Immunology 3 (1), 20–26. o. DOI:10.1038/ni0102-20. PMID 11753406. 

ebi.ac.uk

fda.gov

iisc.ac.in

eprints.iisc.ac.in

jbc.org

nih.gov

pubmed.ncbi.nlm.nih.gov

  • Peters JM, Franke WW, Kleinschmidt JA (1994. március 1.). „Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm”. The Journal of Biological Chemistry 269 (10), 7709–18. o. DOI:10.1016/S0021-9258(17)37345-3. PMID 8125997. 
  • Nassif, Nicholas D. (2014. május 1.). „Slipping up: Partial substrate degradation by ATP-dependent proteases”. IUBMB Life 66 (5), 309–317. o. DOI:10.1002/iub.1271. PMID 24823973. 
  • Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America 74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID 264694. PMC 393195. 
  • Ciehanover A, Hod Y, Hershko A (1978. április 1.). „A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes”. Biochemical and Biophysical Research Communications 81 (4), 1100–5. o. DOI:10.1016/0006-291X(78)91249-4. PMID 666810. 
  • Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America 74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID 265581. PMC 430507. 
  • Ciechanover A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Interview by CDD”. Cell Death and Differentiation 12 (9), 1167–77. o. DOI:10.1038/sj.cdd.4401691. PMID 16094393. 
  • Wilk S, Orlowski M (1980. november 1.). „Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme”. Journal of Neurochemistry 35 (5), 1172–82. o. DOI:10.1111/j.1471-4159.1980.tb07873.x. PMID 6778972. 
  • Arrigo AP, Tanaka, K, Goldberg F, Welch WJ (1988). „Identity of 19S prosome particle with the large multifunctional protease complex of mammalian cells”. Nature 331 (6152), 192–94. o. DOI:10.1038/331192a0. PMID 3277060. Tanaka K, Waxman L, Goldberg AL (1983. június 1.). „ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin”. The Journal of Cell Biology 96 (6), 1580–5. o. DOI:10.1083/jcb.96.6.1580. PMID 6304111. PMC 2112434. 
  • Hough R, Pratt G, Rechsteiner M (1987. június 1.). „Purification of two high molecular weight proteases from rabbit reticulocyte lysate”. The Journal of Biological Chemistry 262 (17), 8303–13. o. DOI:10.1016/S0021-9258(18)47564-3. PMID 3298229. 
  • Hershko A (2005. szeptember 1.). „Early work on the ubiquitin proteasome system, an interview with Avram Hershko. Interview by CDD”. Cell Death and Differentiation 12 (9), 1158–61. o. DOI:10.1038/sj.cdd.4401709. PMID 16094391. 
  • Kopp F, Steiner R, Dahlmann B, Kuehn L, Reinauer H (1986. augusztus 1.). „Size and shape of the multicatalytic proteinase from rat skeletal muscle”. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 872 (3), 253–60. o. DOI:10.1016/0167-4838(86)90278-5. PMID 3524688. 
  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995. április 1.). „Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution”. Science 268 (5210), 533–9. o. DOI:10.1126/science.7725097. PMID 7725097. 
  • Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature 565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID 30479383. PMC 6370054. 
  • Wang J, Maldonado MA (2006. augusztus 1.). „The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases”. Cellular & Molecular Immunology 3 (4), 255–61. o. PMID 16978533. 
  • (2011. január 7.) „Proteasome activators”. Molecular Cell 41 (1), 8–19. o. DOI:10.1016/j.molcel.2010.12.020. PMID 21211719. PMC 3040445. 
  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell 27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID 17803938. PMC 2083707. 
  • Wilk S, Orlowski M (1983. március 1.). „Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex”. Journal of Neurochemistry 40 (3), 842–9. o. DOI:10.1111/j.1471-4159.1983.tb08056.x. PMID 6338156. 
  • Nandi D, Tahiliani P, Kumar A, Chandu D (2006. március 1.). „The ubiquitin-proteasome system”. Journal of Biosciences 31 (1), 137–55. o. DOI:10.1007/BF02705243. PMID 16595883. 
  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997. október 1.). „The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing”. The Journal of Biological Chemistry 272 (40), 25200–9. o. DOI:10.1074/jbc.272.40.25200. PMID 9312134. 
  • Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports 14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID 26997268. PMC 4828729. 
  • Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal 23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID 14739934. PMC 1271798. 
  • Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008. március 1.). „A multimeric assembly factor controls the formation of alternative 20S proteasomes”. Nature Structural & Molecular Biology 15 (3), 237–44. o. DOI:10.1038/nsmb.1389. PMID 18278055. 
  • Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999. szeptember 1.). „An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes”. The Journal of Biological Chemistry 274 (37), 26008–14. o. DOI:10.1074/jbc.274.37.26008. PMID 10473546. 
  • Smith DM, Kafri G, Cheng Y, Ng D, Walz T, Goldberg AL (2005. december 1.). „ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins”. Molecular Cell 20 (5), 687–98. o. DOI:10.1016/j.molcel.2005.10.019. PMID 16337593. 
  • Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell 24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID 17018291. PMC 3951175. 
  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002. április 1.). „A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal”. Nature 416 (6882), 763–7. o. DOI:10.1038/416763a. PMID 11961560. 
  • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID 22927375. PMC 3443124. 
  • Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature 482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID 22237024. PMC 3285539. 
  • Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America 109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID 22307589. PMC 3277140. 
  • Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Huang X, Luan B, Wu J, Shi Y (2016. szeptember 1.). „An atomic structure of the human 26S proteasome”. Nature Structural & Molecular Biology 23 (9), 778–785. o. DOI:10.1038/nsmb.3273. PMID 27428775. 
  • Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America 113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications 9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID 29636472. PMC 5893597. 
  • Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID 24706844. PMC 3992697. 
  • Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America 110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID 23589842. PMC 3645540. 
  • Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology 20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID 23770819. PMC 3712289. 
  • Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell 67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID 28689658. PMC 5580496. 
  • Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001. június 1.). „The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release”. Molecular Cell 7 (6), 1143–52. o. DOI:10.1016/S1097-2765(01)00274-X. PMID 11430818. 
  • Förster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005. május 1.). „The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions”. Molecular Cell 18 (5), 589–99. o. DOI:10.1016/j.molcel.2005.04.016. PMID 15916965. 
  • Witt S, Kwon YD, Sharon M, Felderer K, Beuttler M, Robinson CV, Baumeister W, Jap BK (2006. július 1.). „Proteasome assembly triggers a switch required for active-site maturation”. Structure 14 (7), 1179–88. o. DOI:10.1016/j.str.2006.05.019. PMID 16843899. 
  • Krüger E, Kloetzel PM, Enenkel C (2001). „20S proteasome biogenesis”. Biochimie 83 (3–4), 289–93. o. DOI:10.1016/S0300-9084(01)01241-X. PMID 11295488. 
  • Murata S, Yashiroda H, Tanaka K (2009. február 1.). „Molecular mechanisms of proteasome assembly”. Nature Reviews Molecular Cell Biology 10 (2), 104–115. o. DOI:10.1038/nrm2630. PMID 19165213. 
  • Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson CV (2011. június 1.). „The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle”. Molecular Cell 42 (5), 637–649. o. DOI:10.1016/j.molcel.2011.04.021. PMID 21658604. 
  • Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010. június 1.). „Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae”. Biochemical and Biophysical Research Communications 396 (4), 1048–1053. o. DOI:10.1016/j.bbrc.2010.05.061. PMID 20471955. 
  • Haas AL, Warms JV, Hershko A, Rose IA (1982. március 1.). „Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation”. The Journal of Biological Chemistry 257 (5), 2543–8. o. DOI:10.1016/S0021-9258(18)34958-5. PMID 6277905. 
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal 19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID 10619848. PMC 1171781. 
  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003. június 1.). „Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis”. The Plant Journal 34 (6), 753–67. o. DOI:10.1046/j.1365-313X.2003.01768.x. PMID 12795696. 
  • Elsasser S, Finley D (2005. augusztus 1.). „Delivery of ubiquitinated substrates to protein-unfolding machines”. Nature Cell Biology 7 (8), 742–9. o. DOI:10.1038/ncb0805-742. PMID 16056265. 
  • Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012. október 1.). „The ubiquitin-proteasome system: central modifier of plant signalling”. The New Phytologist 196 (1), 13–28. o. DOI:10.1111/j.1469-8137.2012.04266.x. PMID 22897362. 
  • Sharp PM, Li WH (1987). „Ubiquitin genes as a paradigm of concerted evolution of tandem repeats”. Journal of Molecular Evolution 25 (1), 58–64. o. DOI:10.1007/BF02100041. PMID 3041010. 
  • Pickart CM, Fushman D (2004. december 1.). „Polyubiquitin chains: polymeric protein signals”. Current Opinion in Chemical Biology 8 (6), 610–16. o. DOI:10.1016/j.cbpa.2004.09.009. PMID 15556404. 
  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell 137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID 19345192. PMC 2668214. 
  • Pickart CM (2000. november 1.). „Ubiquitin in chains”. Trends in Biochemical Sciences 25 (11), 544–8. o. DOI:10.1016/S0968-0004(00)01681-9. PMID 11084366. 
  • Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature 605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID 35477760. PMC 9117149. 
  • Zhu Q, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA (2005. július 1.). „Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo”. Experimental Cell Research 307 (2), 436–51. o. DOI:10.1016/j.yexcr.2005.03.031. PMID 15950624. 
  • Wenzel T, Baumeister W (1995. március 1.). „Conformational constraints in protein degradation by the 20S proteasome”. Nature Structural Biology 2 (3), 199–204. o. DOI:10.1038/nsb0395-199. PMID 7773788. 
  • Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology 7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID 21278740. PMC 3129032. 
  • van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports 8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID 25220455. PMC 4358326. 
  • Smith DM, Benaroudj N, Goldberg A (2006. október 1.). „Proteasomes and their associated ATPases: a destructive combination”. Journal of Structural Biology 156 (1), 72–83. o. DOI:10.1016/j.jsb.2006.04.012. PMID 16919475. 
  • Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal 25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID 16601692. PMC 1440830. 
  • Zhang M, Coffino P (2004. március 1.). „Repeat sequence of Epstein–Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing”. The Journal of Biological Chemistry 279 (10), 8635–41. o. DOI:10.1074/jbc.M310449200. PMID 14688254. 
  • Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995. április 1.). „Proteasome from Thermoplasma acidophilum: a threonine protease”. Science 268 (5210), 579–82. o. DOI:10.1126/science.7725107. PMID 7725107. 
  • Coux O, Tanaka K, Goldberg AL (1996. november 29.). „Structure and functions of the 20S and 26S proteasomes”. Annual Review of Biochemistry 65, 801–47. o. DOI:10.1146/annurev.bi.65.070196.004101. PMID 8811196. 
  • Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997. április 1.). „Structure of 20S proteasome from yeast at 2.4 A resolution”. Nature 386 (6624), 463–71. o. DOI:10.1038/386463a0. PMID 9087403. 
  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanović S, Wolf DH, Huber R, Rammensee HG, Schild H (1998. október 1.). „Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants”. The Journal of Biological Chemistry 273 (40), 25637–46. o. DOI:10.1074/jbc.273.40.25637. PMID 9748229. 
  • Voges D, Zwickl P, Baumeister W (1999). „The 26S proteasome: a molecular machine designed for controlled proteolysis”. Annual Review of Biochemistry 68 (1), 1015–68. o. DOI:10.1146/annurev.biochem.68.1.1015. PMID 10872471. 
  • Rape M, Jentsch S (2002. május 1.). „Taking a bite: proteasomal protein processing”. Nature Cell Biology 4 (5), E113–6. o. DOI:10.1038/ncb0502-e113. PMID 11988749. 
  • Rape M, Jentsch S (2004. november 1.). „Productive RUPture: activation of transcription factors by proteasomal processing”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1695 (1–3), 209–13. o. DOI:10.1016/j.bbamcr.2004.09.022. PMID 15571816. 
  • Asher G, Reuven N, Shaul Y (2006. augusztus 1.). „20S proteasomes and protein degradation "by default"”. BioEssays 28 (8), 844–9. o. DOI:10.1002/bies.20447. PMID 16927316. 
  • Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal 22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID 12660156. PMC 152902. 
  • Asher G, Shaul Y (2005. augusztus 1.). „p53 proteasomal degradation: poly-ubiquitination is not the whole story”. Cell Cycle 4 (8), 1015–8. o. DOI:10.4161/cc.4.8.1900. PMID 16082197. 
  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003. január 1.). „Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome”. The Journal of Biological Chemistry 278 (1), 311–8. o. DOI:10.1074/jbc.M206279200. PMID 12401807. 
  • Gille C, Goede A, Schlöetelburg C, Preissner R, Kloetzel PM, Göbel UB, Frömmel C (2003. március 1.). „A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome”. Journal of Molecular Biology 326 (5), 1437–48. o. DOI:10.1016/S0022-2836(02)01470-5. PMID 12595256. 
  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999). „The proteasome”. Annual Review of Biophysics and Biomolecular Structure 28 (1), 295–317. o. DOI:10.1146/annurev.biophys.28.1.295. PMID 10410804. 
  • Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006. augusztus 1.). „Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos”. Cell Cycle 5 (15), 1687–98. o. DOI:10.4161/cc.5.15.3123. PMID 16921258. 
  • Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology 16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID 16782009. PMC 2749311. 
  • Havens CG, Ho A, Yoshioka N, Dowdy SF (2006. június 1.). „Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species”. Molecular and Cellular Biology 26 (12), 4701–11. o. DOI:10.1128/MCB.00303-06. PMID 16738333. PMC 1489138. 
  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004. március 1.). „Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase”. Nature 428 (6979), 190–3. o. DOI:10.1038/nature02330. PMID 15014502. 
  • Higashitsuji H, Liu Y, Mayer RJ, Fujita J (2005. október 1.). „The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation”. Cell Cycle 4 (10), 1335–7. o. DOI:10.4161/cc.4.10.2107. PMID 16177571. 
  • (2020-08-07020) „The proteasome controls ESCRT-III–mediated cell division in an archaeon”. Science 369 (6504), eaaz2532. o. DOI:10.1126/science.aaz2532. PMID 32764038. PMC 7116001. 
  • Dharmasiri S, Estelle M (2002). „The role of regulated protein degradation in auxin response”. Plant Molecular Biology 49 (3–4), 401–9. o. DOI:10.1023/A:1015203013208. PMID 12036263. 
  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal 24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID 15889151. PMC 1142592. 
  • Haas AL, Baboshina O, Williams B, Schwartz LM (1995. április 1.). „Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle”. The Journal of Biological Chemistry 270 (16), 9407–12. o. DOI:10.1074/jbc.270.16.9407. PMID 7721865. 
  • Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C (1990. október 1.). „Activation of polyubiquitin gene expression during developmentally programmed cell death”. Neuron 5 (4), 411–9. o. DOI:10.1016/0896-6273(90)90080-Y. PMID 2169771. 
  • Löw P, Bussell K, Dawson SP, Billett MA, Mayer RJ, Reynolds SE (1997. január 1.). „Expression of a 26S proteasome ATPase subunit, MS73, in muscles that undergo developmentally programmed cell death, and its control by ecdysteroid hormones in the insect Manduca sexta”. FEBS Letters 400 (3), 345–9. o. DOI:10.1016/S0014-5793(96)01413-5. PMID 9009228. 
  • Pitzer F, Dantes A, Fuchs T, Baumeister W, Amsterdam A (1996. szeptember 1.). „Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death”. FEBS Letters 394 (1), 47–50. o. DOI:10.1016/0014-5793(96)00920-9. PMID 8925925. 
  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999. június 1.). „Proteasome inhibitors: a novel class of potent and effective antitumor agents”. Cancer Research 59 (11), 2615–22. o. PMID 10363983. 
  • Orlowski RZ (1999. április 1.). „The role of the ubiquitin-proteasome pathway in apoptosis”. Cell Death and Differentiation 6 (4), 303–13. o. DOI:10.1038/sj.cdd.4400505. PMID 10381632. 
  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006. november 1.). „Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties”. Cell Cycle 5 (22), 2592–2601. o. DOI:10.4161/cc.5.22.3448. PMID 17106261. 
  • Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell 18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID 17065559. PMC 1751312. 
  • Dai Q, Qian SB, Li HH, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM, Patterson C (2005. november 1.). „Regulation of the cytoplasmic quality control protein degradation pathway by BAG2”. The Journal of Biological Chemistry 280 (46), 38673–81. o. DOI:10.1074/jbc.M507986200. PMID 16169850. 
  • Bader N, Grune T (2006). „Protein oxidation and proteolysis”. Biological Chemistry 387 (10–11), 1351–5. o. DOI:10.1515/BC.2006.169. PMID 17081106. 
  • Davies KJ (2003). „Degradation of oxidized proteins by the 20S proteasome”. Biochimie 83 (3–4), 301–10. o. DOI:10.1016/S0300-9084(01)01250-0. PMID 11295490. 
  • Lehman NL (2009. szeptember 1.). „The ubiquitin proteasome system in neuropathology”. Acta Neuropathologica 118 (3), 329–47. o. DOI:10.1007/s00401-009-0560-x. PMID 19597829. PMC 2716447. 
  • McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006. május 1.). „Proteasomal dysfunction in sporadic Parkinson's disease”. Neurology 66 (10 Suppl 4), S37–49. o. DOI:10.1212/01.wnl.0000221745.58886.2e. PMID 16717251. 
  • Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006). „alpha-Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress”. Journal of Molecular Neuroscience 28 (2), 161–78. o. DOI:10.1385/JMN:28:2:161. PMID 16679556. 
  • Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007. június 1.). „Regulation of CD8+ T cell development by thymus-specific proteasomes”. Science 316 (5829), 1349–53. o. DOI:10.1126/science.1141915. PMID 17540904. 
  • Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal 20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID 11350924. PMC 125470. 
  • Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America 107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID 21045130. PMC 2993423. 
  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995. május 1.). „Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin”. Science 268 (5211), 726–31. o. DOI:10.1126/science.7732382. PMID 7732382. 
  • Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O'Connor OA, Shi H, Boral AL, Goy A (2006. október 1.). „Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma”. Journal of Clinical Oncology 24 (30), 4867–74. o. DOI:10.1200/JCO.2006.07.9665. PMID 17001068. 
  • Jakob C, Egerer K, Liebisch P, Türkmen S, Zavrski I, Kuckelkorn U, Heider U, Kaiser M, Fleissner C, Sterz J, Kleeberg L, Feist E, Burmester GR, Kloetzel PM, Sezer O (2007. március 1.). „Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma”. Blood 109 (5), 2100–5. o. DOI:10.1182/blood-2006-04-016360. PMID 17095627. 
  • Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP (2001). „26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer”. Journal of Cellular Biochemistry 82 (1), 110–22. o. DOI:10.1002/jcb.1150. PMID 11400168. 
  • Nawrocki ST, Sweeney-Gotsch B, Takamori R, McConkey DJ (2004. január 1.). „The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts”. Molecular Cancer Therapeutics 3 (1), 59–70. o. DOI:10.1158/1535-7163.59.3.1. PMID 14749476. 
  • Schenkein D (2002. június 1.). „Proteasome inhibitors in the treatment of B-cell malignancies”. Clinical Lymphoma 3 (1), 49–55. o. DOI:10.3816/CLM.2002.n.011. PMID 12141956. 
  • O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD (2005. február 1.). „Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma”. Journal of Clinical Oncology 23 (4), 676–84. o. DOI:10.1200/JCO.2005.02.050. PMID 15613699. 
  • Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, Bostrom BC (2012. július 1.). „Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study”. Blood 120 (2), 285–90. o. DOI:10.1182/blood-2012-04-418640. PMID 22653976. 
  • Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA (2012. április 1.). „Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators”. Molecular and Cellular Endocrinology 351 (2), 142–51. o. DOI:10.1016/j.mce.2012.01.003. PMID 22273806. 
  • Schmidtke G, Holzhütter HG, Bogyo M, Kairies N, Groll M, de Giuli R, Emch S, Groettrup M (1999. december 1.). „How an inhibitor of the HIV-I protease modulates proteasome activity”. The Journal of Biological Chemistry 274 (50), 35734–40. o. DOI:10.1074/jbc.274.50.35734. PMID 10585454. 
  • Laurent N, de Boüard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004. február 1.). „Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo”. Molecular Cancer Therapeutics 3 (2), 129–36. o. DOI:10.1158/1535-7163.129.3.2. PMID 14985453. 
  • Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH (2002. március 1.). „Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model”. The Journal of Clinical Investigation 109 (5), 671–9. o. DOI:10.1172/JCI12736. PMID 11877475. PMC 150886. 
  • Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999. augusztus 1.). „Proteasome inhibition: A novel mechanism to combat asthma”. The Journal of Allergy and Clinical Immunology 104 (2 Pt 1), 294–300. o. DOI:10.1016/S0091-6749(99)70369-6. PMID 10452747. 
  • Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD, van der Linden WA, van den Nieuwendijk AM, Hofmann T, Berkers CR, van Leeuwen FW, Groothuis TA, Leeuwenburgh MA, Ovaa H, Neefjes JJ, Filippov DV, van der Marel GA, Dantuma NP, Overkleeft HS (2006. november 1.). „A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo”. Chemistry & Biology 13 (11), 1217–26. o. DOI:10.1016/j.chembiol.2006.09.013. PMID 17114003. 
  • Kleiger G, Mayor T (2014. június 1.). „Perilous journey: a tour of the ubiquitin-proteasome system”. Trends in Cell Biology 24 (6), 352–9. o. DOI:10.1016/j.tcb.2013.12.003. PMID 24457024. PMC 4037451. 
  • Goldberg AL, Stein R, Adams J (1995. augusztus 1.). „New insights into proteasome function: from archaebacteria to drug development”. Chemistry & Biology 2 (8), 503–8. o. DOI:10.1016/1074-5521(95)90182-5. PMID 9383453. 
  • Sulistio YA, Heese K (2015. január 1.). „The Ubiquitin–Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease”. Molecular Neurobiology 53 (2), 905–31. o. DOI:10.1007/s12035-014-9063-4. PMID 25561438. 
  • Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience 7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID 25324717. PMC 4179678. 
  • Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology 71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID 24380730. PMC 4011959. 
  • Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling 21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID 25133688. PMC 4241867. 
  • Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism 21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID 25651176. PMC 4317573. 
  • Karin M, Delhase M (2000. február 1.). „The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling”. Seminars in Immunology 12 (1), 85–98. o. DOI:10.1006/smim.2000.0210. PMID 10723801. 
  • Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews 23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID 25560147. PMC 4886828. 
  • Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (2000. július 1.). „Role of the proteasome in Alzheimer's disease”. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1502 (1), 133–8. o. DOI:10.1016/s0925-4439(00)00039-9. PMID 10899438. 
  • Chung KK, Dawson VL, Dawson TM (2001. november 1.). „The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders”. Trends in Neurosciences 24 (11 Suppl), S7–14. o. DOI:10.1016/s0166-2236(00)01998-6. PMID 11881748. 
  • Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (2002. július 1.). „Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia”. Acta Neuropathologica 104 (1), 21–8. o. DOI:10.1007/s00401-001-0513-5. PMID 12070660. 
  • Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (1992. május 1.). „Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease”. Neuroscience Letters 139 (1), 47–9. o. DOI:10.1016/0304-3940(92)90854-z. PMID 1328965. 
  • Mathews KD, Moore SA (2003. január 1.). „Limb-girdle muscular dystrophy”. Current Neurology and Neuroscience Reports 3 (1), 78–85. o. DOI:10.1007/s11910-003-0042-9. PMID 12507416. 
  • Mayer RJ (2003. március 1.). „From neurodegeneration to neurohomeostasis: the role of ubiquitin”. Drug News & Perspectives 16 (2), 103–8. o. DOI:10.1358/dnp.2003.16.2.829327. PMID 12792671. 
  • Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology 304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID 23220331. PMC 3774499. 
  • Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation 121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID 20159828. PMC 2857348. 
  • Powell SR (2006. július 1.). „The ubiquitin-proteasome system in cardiac physiology and pathology”. American Journal of Physiology. Heart and Circulatory Physiology 291 (1), H1–H19. o. DOI:10.1152/ajpheart.00062.2006. PMID 16501026. 
  • Adams J (2003. április 1.). „Potential for proteasome inhibition in the treatment of cancer”. Drug Discovery Today 8 (7), 307–15. o. DOI:10.1016/s1359-6446(03)02647-3. PMID 12654543. 
  • Ben-Neriah Y (2002. január 1.). „Regulatory functions of ubiquitination in the immune system”. Nature Immunology 3 (1), 20–26. o. DOI:10.1038/ni0102-20. PMID 11753406. 
  • Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester GR, Kloetzel PM, Feist E (2002. október 1.). „Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases”. The Journal of Rheumatology 29 (10), 2045–52. o. PMID 12375310. 

ncbi.nlm.nih.gov

  • Etlinger JD, Goldberg AL (1977. január 1.). „A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes”. Proceedings of the National Academy of Sciences of the United States of America 74 (1), 54–8. o. DOI:10.1073/pnas.74.1.54. PMID 264694. PMC 393195. 
  • Goldknopf IL, Busch H (1977. március 1.). „Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24”. Proceedings of the National Academy of Sciences of the United States of America 74 (3), 864–8. o. DOI:10.1073/pnas.74.3.864. PMID 265581. PMC 430507. 
  • Arrigo AP, Tanaka, K, Goldberg F, Welch WJ (1988). „Identity of 19S prosome particle with the large multifunctional protease complex of mammalian cells”. Nature 331 (6152), 192–94. o. DOI:10.1038/331192a0. PMID 3277060. Tanaka K, Waxman L, Goldberg AL (1983. június 1.). „ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin”. The Journal of Cell Biology 96 (6), 1580–5. o. DOI:10.1083/jcb.96.6.1580. PMID 6304111. PMC 2112434. 
  • Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y (2018. november 1.). „Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome”. Nature 565 (7737), 49–55. o. DOI:10.1038/s41586-018-0736-4. PMID 30479383. PMC 6370054. 
  • (2011. január 7.) „Proteasome activators”. Molecular Cell 41 (1), 8–19. o. DOI:10.1016/j.molcel.2010.12.020. PMID 21211719. PMC 3040445. 
  • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL (2007. szeptember 1.). „Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry”. Molecular Cell 27 (5), 731–44. o. DOI:10.1016/j.molcel.2007.06.033. PMID 17803938. PMC 2083707. 
  • Padmanabhan A, Vuong SA, Hochstrasser M (2016. március 1.). „Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells”. Cell Reports 14 (12), 2962–74. o. DOI:10.1016/j.celrep.2016.02.068. PMID 26997268. PMC 4828729. 
  • Velichutina I, Connerly PL, Arendt CS, Li X, Hochstrasser M (2004. február 1.). „Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast”. The EMBO Journal 23 (3), 500–10. o. DOI:10.1038/sj.emboj.7600059. PMID 14739934. PMC 1271798. 
  • Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN (2006. október 1.). „ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome”. Molecular Cell 24 (1), 39–50. o. DOI:10.1016/j.molcel.2006.08.025. PMID 17018291. PMC 3951175. 
  • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F (2012. szeptember 1.). „Near-atomic resolution structural model of the yeast 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 109 (37), 14870–5. o. DOI:10.1073/pnas.1213333109. PMID 22927375. PMC 3443124. 
  • Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012. február 1.). „Complete subunit architecture of the proteasome regulatory particle”. Nature 482 (7384), 186–91. o. DOI:10.1038/nature10774. PMID 22237024. PMC 3285539. 
  • Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012. január 1.). „Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach”. Proceedings of the National Academy of Sciences of the United States of America 109 (5), 1380–7. o. DOI:10.1073/pnas.1120559109. PMID 22307589. PMC 3277140. 
  • Chen S, Wu J, Lu Y, Ma YB, Lee BH, Yu Z, Ouyang Q, Finley DJ, Kirschner MW, Mao Y (2016. november 1.). „Structural basis for dynamic regulation of the human 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 113 (46), 12991–12996. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016. július 1.). „Structure of the human 26S proteasome at a resolution of 3.9 Å”. Proceedings of the National Academy of Sciences of the United States of America 113 (28), 7816–7821. o. DOI:10.1073/pnas.1614614113. PMID 27791164. PMC 5135334. 
  • Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y (2018. április 1.). „Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome”. Nature Communications 9 (1), 1360. o. DOI:10.1038/s41467-018-03785-w. PMID 29636472. PMC 5893597. 
  • Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F (2014. április 1.). „Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome”. Proceedings of the National Academy of Sciences of the United States of America 111 (15), 5544–9. o. DOI:10.1073/pnas.1403409111. PMID 24706844. PMC 3992697. 
  • Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W (2013. április 1.). „Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation”. Proceedings of the National Academy of Sciences of the United States of America 110 (18), 7264–7269. o. DOI:10.1073/pnas.1305782110. PMID 23589842. PMC 3645540. 
  • Matyskiela ME, Lander GC, Martin A (2013. július 1.). „Conformational switching of the 26S proteasome enables substrate degradation”. Nature Structural & Molecular Biology 20 (7), 781–788. o. DOI:10.1038/nsmb.2616. PMID 23770819. PMC 3712289. 
  • Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y (2017. július 1.). „Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle”. Molecular Cell 67 (2), 322–333.e6. o. DOI:10.1016/j.molcel.2017.06.007. PMID 28689658. PMC 5580496. 
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000. január 1.). „Recognition of the polyubiquitin proteolytic signal”. The EMBO Journal 19 (1), 94–102. o. DOI:10.1093/emboj/19.1.94. PMID 10619848. PMC 1171781. 
  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009. április 1.). „Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation”. Cell 137 (1), 133–45. o. DOI:10.1016/j.cell.2009.01.041. PMID 19345192. PMC 2668214. 
  • Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y (2022. április 1.). „USP14-regulated allostery of the human proteasome by time-resolved cryo-EM”. Nature 605 (7910), 567–574. o. DOI:10.1038/s41586-022-04671-8. PMID 35477760. PMC 9117149. 
  • Inobe T, Fishbain S, Prakash S, Matouschek A (2011. március 1.). „Defining the geometry of the two-component proteasome degron”. Nature Chemical Biology 7 (3), 161–7. o. DOI:10.1038/nchembio.521. PMID 21278740. PMC 3129032. 
  • van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM (2014. szeptember 1.). „Intrinsically disordered segments affect protein half-life in the cell and during evolution”. Cell Reports 8 (6), 1832–44. o. DOI:10.1016/j.celrep.2014.07.055. PMID 25220455. PMC 4358326. 
  • Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P (2006. április 1.). „Glycine-alanine repeats impair proper substrate unfolding by the proteasome”. The EMBO Journal 25 (8), 1720–9. o. DOI:10.1038/sj.emboj.7601058. PMID 16601692. PMC 1440830. 
  • Zhang M, Pickart CM, Coffino P (2003. április 1.). „Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate”. The EMBO Journal 22 (7), 1488–96. o. DOI:10.1093/emboj/cdg158. PMID 12660156. PMC 152902. 
  • Brito DA, Rieder CL (2006. június 1.). „Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint”. Current Biology 16 (12), 1194–200. o. DOI:10.1016/j.cub.2006.04.043. PMID 16782009. PMC 2749311. 
  • Havens CG, Ho A, Yoshioka N, Dowdy SF (2006. június 1.). „Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species”. Molecular and Cellular Biology 26 (12), 4701–11. o. DOI:10.1128/MCB.00303-06. PMID 16738333. PMC 1489138. 
  • (2020-08-07020) „The proteasome controls ESCRT-III–mediated cell division in an archaeon”. Science 369 (6504), eaaz2532. o. DOI:10.1126/science.aaz2532. PMID 32764038. PMC 7116001. 
  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005. május 1.). „Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators”. The EMBO Journal 24 (10), 1874–85. o. DOI:10.1038/sj.emboj.7600659. PMID 15889151. PMC 1142592. 
  • Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH (2007. január 1.). „The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system”. Molecular Biology of the Cell 18 (1), 153–65. o. DOI:10.1091/mbc.E06-04-0338. PMID 17065559. PMC 1751312. 
  • Lehman NL (2009. szeptember 1.). „The ubiquitin proteasome system in neuropathology”. Acta Neuropathologica 118 (3), 329–47. o. DOI:10.1007/s00401-009-0560-x. PMID 19597829. PMC 2716447. 
  • Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001. május 1.). „26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide”. The EMBO Journal 20 (10), 2357–66. o. DOI:10.1093/emboj/20.10.2357. PMID 11350924. PMC 125470. 
  • Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010. november 1.). „Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)”. Proceedings of the National Academy of Sciences of the United States of America 107 (46), 19985–19990. o. DOI:10.1073/pnas.1014074107. PMID 21045130. PMC 2993423. 
  • Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke WH (2002. március 1.). „Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model”. The Journal of Clinical Investigation 109 (5), 671–9. o. DOI:10.1172/JCI12736. PMID 11877475. PMC 150886. 
  • Kleiger G, Mayor T (2014. június 1.). „Perilous journey: a tour of the ubiquitin-proteasome system”. Trends in Cell Biology 24 (6), 352–9. o. DOI:10.1016/j.tcb.2013.12.003. PMID 24457024. PMC 4037451. 
  • Ortega Z, Lucas JJ (2014. november 29.). „Ubiquitin-proteasome system involvement in Huntington's disease”. Frontiers in Molecular Neuroscience 7, 77. o. DOI:10.3389/fnmol.2014.00077. PMID 25324717. PMC 4179678. 
  • Sandri M, Robbins J (2014. június 1.). „Proteotoxicity: an underappreciated pathology in cardiac disease”. Journal of Molecular and Cellular Cardiology 71, 3–10. o. DOI:10.1016/j.yjmcc.2013.12.015. PMID 24380730. PMC 4011959. 
  • Drews O, Taegtmeyer H (2014. december 1.). „Targeting the ubiquitin–proteasome system in heart disease: the basis for new therapeutic strategies”. Antioxidants & Redox Signaling 21 (17), 2322–43. o. DOI:10.1089/ars.2013.5823. PMID 25133688. PMC 4241867. 
  • Wang ZV, Hill JA (2015. február 1.). „Protein quality control and metabolism: bidirectional control in the heart”. Cell Metabolism 21 (2), 215–26. o. DOI:10.1016/j.cmet.2015.01.016. PMID 25651176. PMC 4317573. 
  • Ermolaeva MA, Dakhovnik A, Schumacher B (2015. január 1.). „Quality control mechanisms in cellular and systemic DNA damage responses”. Ageing Research Reviews 23 (Pt A), 3–11. o. DOI:10.1016/j.arr.2014.12.009. PMID 25560147. PMC 4886828. 
  • Calise J, Powell SR (2013. február 1.). „The ubiquitin proteasome system and myocardial ischemia”. American Journal of Physiology. Heart and Circulatory Physiology 304 (3), H337–49. o. DOI:10.1152/ajpheart.00604.2012. PMID 23220331. PMC 3774499. 
  • Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010. március 1.). „Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies”. Circulation 121 (8), 997–1004. o. DOI:10.1161/CIRCULATIONAHA.109.904557. PMID 20159828. PMC 2857348. 

nobelprize.org