Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009. március 1.). „Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"”. Proceedings of the National Academy of Sciences of the United States of America106 (10), 3859–64. o. DOI:10.1073/pnas.0807880106. PMID19237557. PMC2656170.
Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012. szeptember 1.). „The revised classification of eukaryotes”. The Journal of Eukaryotic Microbiology59 (5), 429–493. o. DOI:10.1111/j.1550-7408.2012.00644.x. PMID23020233. PMC3483872.
Strassert JF, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (2019. április 1.). „New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life”. Molecular Biology and Evolution36 (4), 757–765. o. DOI:10.1093/molbev/msz012. PMID30668767. PMC6844682.
Cavalier-Smith T (2010. június 1.). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
Strassert JF (2021. március 1.). „A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids”. Nature Communications12 (1), 1879. o. DOI:10.1038/s41467-021-22044-z. PMID33767194. PMC7994803.
Burki F (2014. május 1.). „The eukaryotic tree of life from a global phylogenomic perspective”. Cold Spring Harbor Perspectives in Biology6 (5), a016147. o. DOI:10.1101/cshperspect.a016147. PMID24789819. PMC3996474.
McFadden, G. I. (2001). „Primary and secondary endosymbiosis and the origin of plastids”. Journal of Phycology37 (6), 951–959. o. DOI:10.1046/j.1529-8817.2001.01126.x.
Grattepanche, Jean David (2018. március 1.). „Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular DataDarkness Between Morphology and Molecular Data”. BioEssays. DOI:10.1002/bies.201700198.
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009. március 1.). „Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"”. Proceedings of the National Academy of Sciences of the United States of America106 (10), 3859–64. o. DOI:10.1073/pnas.0807880106. PMID19237557. PMC2656170.
Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012. szeptember 1.). „The revised classification of eukaryotes”. The Journal of Eukaryotic Microbiology59 (5), 429–493. o. DOI:10.1111/j.1550-7408.2012.00644.x. PMID23020233. PMC3483872.
Strassert JF, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (2019. április 1.). „New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life”. Molecular Biology and Evolution36 (4), 757–765. o. DOI:10.1093/molbev/msz012. PMID30668767. PMC6844682.
Cavalier-Smith T (2010. június 1.). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
Strassert JF (2021. március 1.). „A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids”. Nature Communications12 (1), 1879. o. DOI:10.1038/s41467-021-22044-z. PMID33767194. PMC7994803.
Burki F (2014. május 1.). „The eukaryotic tree of life from a global phylogenomic perspective”. Cold Spring Harbor Perspectives in Biology6 (5), a016147. o. DOI:10.1101/cshperspect.a016147. PMID24789819. PMC3996474.
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007. augusztus 1.). „Phylogenomics reshuffles the eukaryotic supergroups”. PLOS ONE2 (8), e790. o. DOI:10.1371/journal.pone.0000790. PMID17726520. PMC1949142.
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009. március 1.). „Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"”. Proceedings of the National Academy of Sciences of the United States of America106 (10), 3859–64. o. DOI:10.1073/pnas.0807880106. PMID19237557. PMC2656170.
Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012. szeptember 1.). „The revised classification of eukaryotes”. The Journal of Eukaryotic Microbiology59 (5), 429–493. o. DOI:10.1111/j.1550-7408.2012.00644.x. PMID23020233. PMC3483872.
Strassert JF, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (2019. április 1.). „New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life”. Molecular Biology and Evolution36 (4), 757–765. o. DOI:10.1093/molbev/msz012. PMID30668767. PMC6844682.
Cavalier-Smith T (2010. június 1.). „Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters6 (3), 342–345. o. DOI:10.1098/rsbl.2009.0948. PMID20031978. PMC2880060.
Strassert JF (2021. március 1.). „A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids”. Nature Communications12 (1), 1879. o. DOI:10.1038/s41467-021-22044-z. PMID33767194. PMC7994803.
Burki F (2014. május 1.). „The eukaryotic tree of life from a global phylogenomic perspective”. Cold Spring Harbor Perspectives in Biology6 (5), a016147. o. DOI:10.1101/cshperspect.a016147. PMID24789819. PMC3996474.