Sunifiram (Hungarian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Sunifiram" in Hungarian language version.

refsWebsite
Global rank Hungarian rank
4th place
11th place
2nd place
8th place
6th place
14th place

archive.org

doi.org

dx.doi.org

  • (2002) „DM235 (sunifiram): a novel nootropic with potential as a cognitive enhancer”. Naunyn-Schmiedeberg's archives of pharmacology 365 (6), 419–426. o. DOI:10.1007/s00210-002-0577-3. PMID 12070754. 
  • (2006) „Pharmacological characterization of DM232 (unifiram) and DM235 (sunifiram), new potent cognition enhancers”. CNS Drug Reviews 12 (1), 39–52. o. DOI:10.1111/j.1527-3458.2006.00039.x. PMID 16834757. 
  • (2004) „Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs”. Bioorganic & Medicinal Chemistry 12 (1), 71–85. o. DOI:10.1016/j.bmc.2003.10.025. PMID 14697772. 
  • (2008) „Design, synthesis and preliminary pharmacological evaluation of new piperidine and piperazine derivatives as cognition-enhancers”. Bioorganic & Medicinal Chemistry 16 (3), 1431–1443. o. DOI:10.1016/j.bmc.2007.10.050. PMID 17981042. 
  • (2008) „Design, synthesis and preliminary pharmacological evaluation of new analogues of DM232 (unifiram) and DM235 (sunifiram) as cognition modulators”. Bioorganic & Medicinal Chemistry 16 (23), 10034–10042. o. DOI:10.1016/j.bmc.2008.10.017. PMID 18954993. 
  • (2003) „AMPA-receptor activation is involved in the antiamnesic effect of DM 232 (unifiram) and DM 235 (sunifiram)”. Naunyn-Schmiedeberg's archives of pharmacology 368 (6), 538–545. o. DOI:10.1007/s00210-003-0812-6. PMID 14600801. 
  • (2013) „Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine binding site of N-methyl-D-aspartate receptor”. Hippocampus. DOI:10.1002/hipo.22150. PMID 23733502. 
  • (2013) „Novel nootropic drug sunifiram improves cognitive deficits via CaM kinase II and protein kinase C activation in olfactory bulbectomized mice”. Behavioural Brain Research 242, 150–157. o. DOI:10.1016/j.bbr.2012.12.054. PMID 23295391. 
  • (1993) „Cognition stimulating drugs modulate protein kinase C activity in cerebral cortex and hippocampus of adult rats”. Life sciences 53 (24), 1821–1832. o. DOI:10.1016/0024-3205(93)90490-T. PMID 8246681. 
  • (2000) „Molecular simplification of 1,4-diazabicyclo4.3.0nonan-9-ones gives piperazine derivatives that maintain high nootropic activity”. Journal of medicinal chemistry 43 (23), 4499–4507. o. DOI:10.1021/jm000972h. PMID 11087574. 
  • (2008) „CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region”. Journal of neurochemistry 106 (3), 1092–1103. o. DOI:10.1111/j.1471-4159.2008.05440.x. PMID 18445137. 
  • (2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology 588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID 20807790. PMC 3000583. 
  • (2012) „Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1”. Neuroscience Letters 524 (1), 5–9. o. DOI:10.1016/j.neulet.2012.06.047. PMID 22750162. 
  • (2003) „Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus”. Journal of neurochemistry 85 (4), 872–881. o. DOI:10.1046/j.1471-4159.2003.01725.x. PMID 12716419. 
  • (2012) „Lithium: A switch from LTD- to LTP-like plasticity in human cortex”. Neuropharmacology 63 (2), 274–279. o. DOI:10.1016/j.neuropharm.2012.03.023. PMID 22507665. 
  • (2003) „Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: A role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity”. FEBS letters 538 (1–3), 145–148. o. DOI:10.1016/S0014-5793(03)00167-4. PMID 12633868. 
  • (1999) „Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity”. The Journal of biological chemistry 274 (10), 6039–6042. o. DOI:10.1074/jbc.274.10.6039. PMID 10037682. 
  • (1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America 95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID 9482940. PMC 19446. 
  • (2002) „Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation”. Journal of neurochemistry 80 (4), 589–597. o. DOI:10.1046/j.0022-3042.2001.00728.x. PMID 11841566. 

nih.gov

pubmed.ncbi.nlm.nih.gov

  • (2002) „DM235 (sunifiram): a novel nootropic with potential as a cognitive enhancer”. Naunyn-Schmiedeberg's archives of pharmacology 365 (6), 419–426. o. DOI:10.1007/s00210-002-0577-3. PMID 12070754. 
  • (2006) „Pharmacological characterization of DM232 (unifiram) and DM235 (sunifiram), new potent cognition enhancers”. CNS Drug Reviews 12 (1), 39–52. o. DOI:10.1111/j.1527-3458.2006.00039.x. PMID 16834757. 
  • (2004) „Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs”. Bioorganic & Medicinal Chemistry 12 (1), 71–85. o. DOI:10.1016/j.bmc.2003.10.025. PMID 14697772. 
  • (2008) „Design, synthesis and preliminary pharmacological evaluation of new piperidine and piperazine derivatives as cognition-enhancers”. Bioorganic & Medicinal Chemistry 16 (3), 1431–1443. o. DOI:10.1016/j.bmc.2007.10.050. PMID 17981042. 
  • (2008) „Design, synthesis and preliminary pharmacological evaluation of new analogues of DM232 (unifiram) and DM235 (sunifiram) as cognition modulators”. Bioorganic & Medicinal Chemistry 16 (23), 10034–10042. o. DOI:10.1016/j.bmc.2008.10.017. PMID 18954993. 
  • (2003) „AMPA-receptor activation is involved in the antiamnesic effect of DM 232 (unifiram) and DM 235 (sunifiram)”. Naunyn-Schmiedeberg's archives of pharmacology 368 (6), 538–545. o. DOI:10.1007/s00210-003-0812-6. PMID 14600801. 
  • (2013) „Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine binding site of N-methyl-D-aspartate receptor”. Hippocampus. DOI:10.1002/hipo.22150. PMID 23733502. 
  • (2013) „Novel nootropic drug sunifiram improves cognitive deficits via CaM kinase II and protein kinase C activation in olfactory bulbectomized mice”. Behavioural Brain Research 242, 150–157. o. DOI:10.1016/j.bbr.2012.12.054. PMID 23295391. 
  • (1993) „Cognition stimulating drugs modulate protein kinase C activity in cerebral cortex and hippocampus of adult rats”. Life sciences 53 (24), 1821–1832. o. DOI:10.1016/0024-3205(93)90490-T. PMID 8246681. 
  • (2000) „Molecular simplification of 1,4-diazabicyclo4.3.0nonan-9-ones gives piperazine derivatives that maintain high nootropic activity”. Journal of medicinal chemistry 43 (23), 4499–4507. o. DOI:10.1021/jm000972h. PMID 11087574. 
  • (2008) „CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region”. Journal of neurochemistry 106 (3), 1092–1103. o. DOI:10.1111/j.1471-4159.2008.05440.x. PMID 18445137. 
  • (2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology 588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID 20807790. PMC 3000583. 
  • (2012) „Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1”. Neuroscience Letters 524 (1), 5–9. o. DOI:10.1016/j.neulet.2012.06.047. PMID 22750162. 
  • (2003) „Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus”. Journal of neurochemistry 85 (4), 872–881. o. DOI:10.1046/j.1471-4159.2003.01725.x. PMID 12716419. 
  • (2012) „Lithium: A switch from LTD- to LTP-like plasticity in human cortex”. Neuropharmacology 63 (2), 274–279. o. DOI:10.1016/j.neuropharm.2012.03.023. PMID 22507665. 
  • (2003) „Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: A role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity”. FEBS letters 538 (1–3), 145–148. o. DOI:10.1016/S0014-5793(03)00167-4. PMID 12633868. 
  • (1999) „Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity”. The Journal of biological chemistry 274 (10), 6039–6042. o. DOI:10.1074/jbc.274.10.6039. PMID 10037682. 
  • (1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America 95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID 9482940. PMC 19446. 
  • (2002) „Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation”. Journal of neurochemistry 80 (4), 589–597. o. DOI:10.1046/j.0022-3042.2001.00728.x. PMID 11841566. 

ncbi.nlm.nih.gov

  • (2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology 588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID 20807790. PMC 3000583. 
  • (1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America 95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID 9482940. PMC 19446.