(2002) „DM235 (sunifiram): a novel nootropic with potential as a cognitive enhancer”. Naunyn-Schmiedeberg's archives of pharmacology365 (6), 419–426. o. DOI:10.1007/s00210-002-0577-3. PMID12070754.
(2006) „Pharmacological characterization of DM232 (unifiram) and DM235 (sunifiram), new potent cognition enhancers”. CNS Drug Reviews12 (1), 39–52. o. DOI:10.1111/j.1527-3458.2006.00039.x. PMID16834757.
(2004) „Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs”. Bioorganic & Medicinal Chemistry12 (1), 71–85. o. DOI:10.1016/j.bmc.2003.10.025. PMID14697772.
(2008) „Design, synthesis and preliminary pharmacological evaluation of new piperidine and piperazine derivatives as cognition-enhancers”. Bioorganic & Medicinal Chemistry16 (3), 1431–1443. o. DOI:10.1016/j.bmc.2007.10.050. PMID17981042.
(2008) „Design, synthesis and preliminary pharmacological evaluation of new analogues of DM232 (unifiram) and DM235 (sunifiram) as cognition modulators”. Bioorganic & Medicinal Chemistry16 (23), 10034–10042. o. DOI:10.1016/j.bmc.2008.10.017. PMID18954993.
(2003) „AMPA-receptor activation is involved in the antiamnesic effect of DM 232 (unifiram) and DM 235 (sunifiram)”. Naunyn-Schmiedeberg's archives of pharmacology368 (6), 538–545. o. DOI:10.1007/s00210-003-0812-6. PMID14600801.
(2013) „Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine binding site of N-methyl-D-aspartate receptor”. Hippocampus. DOI:10.1002/hipo.22150. PMID23733502.
(2013) „Novel nootropic drug sunifiram improves cognitive deficits via CaM kinase II and protein kinase C activation in olfactory bulbectomized mice”. Behavioural Brain Research242, 150–157. o. DOI:10.1016/j.bbr.2012.12.054. PMID23295391.
(2000) „Molecular simplification of 1,4-diazabicyclo4.3.0nonan-9-ones gives piperazine derivatives that maintain high nootropic activity”. Journal of medicinal chemistry43 (23), 4499–4507. o. DOI:10.1021/jm000972h. PMID11087574.
(2008) „CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region”. Journal of neurochemistry106 (3), 1092–1103. o. DOI:10.1111/j.1471-4159.2008.05440.x. PMID18445137.
(2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID20807790. PMC3000583.
(2012) „Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1”. Neuroscience Letters524 (1), 5–9. o. DOI:10.1016/j.neulet.2012.06.047. PMID22750162.
(2003) „Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus”. Journal of neurochemistry85 (4), 872–881. o. DOI:10.1046/j.1471-4159.2003.01725.x. PMID12716419.
(2003) „Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: A role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity”. FEBS letters538 (1–3), 145–148. o. DOI:10.1016/S0014-5793(03)00167-4. PMID12633868.
(1999) „Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity”. The Journal of biological chemistry274 (10), 6039–6042. o. DOI:10.1074/jbc.274.10.6039. PMID10037682.
(1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID9482940. PMC19446.
(2002) „Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation”. Journal of neurochemistry80 (4), 589–597. o. DOI:10.1046/j.0022-3042.2001.00728.x. PMID11841566.
nih.gov
pubmed.ncbi.nlm.nih.gov
(2002) „DM235 (sunifiram): a novel nootropic with potential as a cognitive enhancer”. Naunyn-Schmiedeberg's archives of pharmacology365 (6), 419–426. o. DOI:10.1007/s00210-002-0577-3. PMID12070754.
(2006) „Pharmacological characterization of DM232 (unifiram) and DM235 (sunifiram), new potent cognition enhancers”. CNS Drug Reviews12 (1), 39–52. o. DOI:10.1111/j.1527-3458.2006.00039.x. PMID16834757.
(2004) „Structure-activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs”. Bioorganic & Medicinal Chemistry12 (1), 71–85. o. DOI:10.1016/j.bmc.2003.10.025. PMID14697772.
(2008) „Design, synthesis and preliminary pharmacological evaluation of new piperidine and piperazine derivatives as cognition-enhancers”. Bioorganic & Medicinal Chemistry16 (3), 1431–1443. o. DOI:10.1016/j.bmc.2007.10.050. PMID17981042.
(2008) „Design, synthesis and preliminary pharmacological evaluation of new analogues of DM232 (unifiram) and DM235 (sunifiram) as cognition modulators”. Bioorganic & Medicinal Chemistry16 (23), 10034–10042. o. DOI:10.1016/j.bmc.2008.10.017. PMID18954993.
(2003) „AMPA-receptor activation is involved in the antiamnesic effect of DM 232 (unifiram) and DM 235 (sunifiram)”. Naunyn-Schmiedeberg's archives of pharmacology368 (6), 538–545. o. DOI:10.1007/s00210-003-0812-6. PMID14600801.
(2013) „Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine binding site of N-methyl-D-aspartate receptor”. Hippocampus. DOI:10.1002/hipo.22150. PMID23733502.
(2013) „Novel nootropic drug sunifiram improves cognitive deficits via CaM kinase II and protein kinase C activation in olfactory bulbectomized mice”. Behavioural Brain Research242, 150–157. o. DOI:10.1016/j.bbr.2012.12.054. PMID23295391.
(2000) „Molecular simplification of 1,4-diazabicyclo4.3.0nonan-9-ones gives piperazine derivatives that maintain high nootropic activity”. Journal of medicinal chemistry43 (23), 4499–4507. o. DOI:10.1021/jm000972h. PMID11087574.
(2008) „CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region”. Journal of neurochemistry106 (3), 1092–1103. o. DOI:10.1111/j.1471-4159.2008.05440.x. PMID18445137.
(2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID20807790. PMC3000583.
(2012) „Effects of 4-weeks of treatment with lithium and olanzapine on long-term potentiation in hippocampal area CA1”. Neuroscience Letters524 (1), 5–9. o. DOI:10.1016/j.neulet.2012.06.047. PMID22750162.
(2003) „Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus”. Journal of neurochemistry85 (4), 872–881. o. DOI:10.1046/j.1471-4159.2003.01725.x. PMID12716419.
(2003) „Lithium-induced inhibition of Src tyrosine kinase in rat cerebral cortical neurons: A role in neuroprotection against N-methyl-D-aspartate receptor-mediated excitotoxicity”. FEBS letters538 (1–3), 145–148. o. DOI:10.1016/S0014-5793(03)00167-4. PMID12633868.
(1999) „Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity”. The Journal of biological chemistry274 (10), 6039–6042. o. DOI:10.1074/jbc.274.10.6039. PMID10037682.
(1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID9482940. PMC19446.
(2002) „Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation”. Journal of neurochemistry80 (4), 589–597. o. DOI:10.1046/j.0022-3042.2001.00728.x. PMID11841566.
ncbi.nlm.nih.gov
(2010) „Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability”. The Journal of Physiology588 (20), 3933–3941. o. DOI:10.1113/jphysiol.2010.195115. PMID20807790. PMC3000583.
(1998) „Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx”. Proceedings of the National Academy of Sciences of the United States of America95 (5), 2642–2647. o. DOI:10.1073/pnas.95.5.2642. PMID9482940. PMC19446.