Analysis of information sources in references of the Wikipedia article "Ibun abadi" in Indonesian language version.
Both freshwater ice (e.g., glaciers and ice sheets) and sea ice may entrap and preserve enormous numbers of viruses. We estimate that 1017–1021 viable microbes (including fungi, bacteria, and viruses) are released from melting ice annually.
The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%).
The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming.
Di situs-situs yang umumnya diliputi oleh ibun abadi yang kaya akan es, ekosistem hutan dapat benar-benar hancur ... Ujung pohon di tepi termokarst dapat digunakan untuk mengetahui umur waktu pencairan ibun abadi yang mendasari ....
Di situs-situs yang umumnya diliputi oleh ibun abadi yang kaya akan es, ekosistem hutan dapat benar-benar hancur ... Ujung pohon di tepi termokarst dapat digunakan untuk mengetahui umur waktu pencairan ibun abadi yang mendasari ....
The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming.
The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%).
Both freshwater ice (e.g., glaciers and ice sheets) and sea ice may entrap and preserve enormous numbers of viruses. We estimate that 1017–1021 viable microbes (including fungi, bacteria, and viruses) are released from melting ice annually.
Both freshwater ice (e.g., glaciers and ice sheets) and sea ice may entrap and preserve enormous numbers of viruses. We estimate that 1017–1021 viable microbes (including fungi, bacteria, and viruses) are released from melting ice annually.
The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%).
The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming.