Ibun abadi (Indonesian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Ibun abadi" in Indonesian language version.

refsWebsite
Global rank Indonesian rank
2nd place
4th place
5th place
7th place
1,141st place
11th place
75th place
84th place
8,758th place
8,343rd place
2,660th place
321st place
149th place
229th place
485th place
563rd place
92nd place
444th place
4th place
13th place
26th place
53rd place

doi.org

  • Smith, Alvin W.; Skilling, Douglas E.; Castello, John D.; Rogers, Scott O. (1 Januari 2004). "Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses". Medical Hypotheses (dalam bahasa Inggris). 63 (4): 561. doi:10.1016/j.mehy.2004.05.011. ISSN 0306-9877. Both freshwater ice (e.g., glaciers and ice sheets) and sea ice may entrap and preserve enormous numbers of viruses. We estimate that 1017–1021 viable microbes (including fungi, bacteria, and viruses) are released from melting ice annually. 
  • Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin (1 Maret 2016). "Microbial diversity in European alpine permafrost and active layers". FEMS Microbiology Ecology (dalam bahasa Inggris). 92 (3): 5. doi:10.1093/femsec/fiw018alt=Dapat diakses gratis. ISSN 0168-6496. The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%). 
  • Legendre, Matthieu; Lartigue, Audrey; Bertaux, Lionel; Jeudy, Sandra; Bartoli, Julia; Lescot, Magali; Alempic, Jean-Marie; Ramus, Claire; Bruley, Christophe (22 September 2015). "In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5327–E5335. doi:10.1073/pnas.1510795112alt=Dapat diakses gratis. ISSN 0027-8424. PMC 4586845alt=Dapat diakses gratis. PMID 26351664. The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming. 
  • Osterkamp, T.E.; Viereck, L.; Shur, Y.; Jorgenson, M.T.; Racine, C.; Doyle, A.; Boone, R.D. (2000). "Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, USA". Arctic, Antarctic, and Alpine Research. INSTAAR, Universitas of Colorado. 32 (3): 303–315. doi:10.2307/1552529alt=Dapat diakses gratis. JSTOR 1552529. Di situs-situs yang umumnya diliputi oleh ibun abadi yang kaya akan es, ekosistem hutan dapat benar-benar hancur ... Ujung pohon di tepi termokarst dapat digunakan untuk mengetahui umur waktu pencairan ibun abadi yang mendasari .... 

jstor.org

  • Osterkamp, T.E.; Viereck, L.; Shur, Y.; Jorgenson, M.T.; Racine, C.; Doyle, A.; Boone, R.D. (2000). "Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, USA". Arctic, Antarctic, and Alpine Research. INSTAAR, Universitas of Colorado. 32 (3): 303–315. doi:10.2307/1552529alt=Dapat diakses gratis. JSTOR 1552529. Di situs-situs yang umumnya diliputi oleh ibun abadi yang kaya akan es, ekosistem hutan dapat benar-benar hancur ... Ujung pohon di tepi termokarst dapat digunakan untuk mengetahui umur waktu pencairan ibun abadi yang mendasari .... 

kemdikbud.go.id

kbbi.kemdikbud.go.id

  • Badan Pengembangan dan Pembinaan Bahasa. "KBBI Daring". KBBI V. Kementerian Pendidikan dan Kebudayaan Republik Indonesia. Diakses tanggal 2020-05-23. 

nasa.gov

climatekids.nasa.gov

nationalgeographic.org

nih.gov

ncbi.nlm.nih.gov

  • Legendre, Matthieu; Lartigue, Audrey; Bertaux, Lionel; Jeudy, Sandra; Bartoli, Julia; Lescot, Magali; Alempic, Jean-Marie; Ramus, Claire; Bruley, Christophe (22 September 2015). "In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5327–E5335. doi:10.1073/pnas.1510795112alt=Dapat diakses gratis. ISSN 0027-8424. PMC 4586845alt=Dapat diakses gratis. PMID 26351664. The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming. 

npr.org

nrdc.org

oup.com

academic.oup.com

  • Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin (1 Maret 2016). "Microbial diversity in European alpine permafrost and active layers". FEMS Microbiology Ecology (dalam bahasa Inggris). 92 (3): 5. doi:10.1093/femsec/fiw018alt=Dapat diakses gratis. ISSN 0168-6496. The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%). 

sciencedirect.com

worldcat.org

  • Smith, Alvin W.; Skilling, Douglas E.; Castello, John D.; Rogers, Scott O. (1 Januari 2004). "Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses". Medical Hypotheses (dalam bahasa Inggris). 63 (4): 561. doi:10.1016/j.mehy.2004.05.011. ISSN 0306-9877. Both freshwater ice (e.g., glaciers and ice sheets) and sea ice may entrap and preserve enormous numbers of viruses. We estimate that 1017–1021 viable microbes (including fungi, bacteria, and viruses) are released from melting ice annually. 
  • Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin (1 Maret 2016). "Microbial diversity in European alpine permafrost and active layers". FEMS Microbiology Ecology (dalam bahasa Inggris). 92 (3): 5. doi:10.1093/femsec/fiw018alt=Dapat diakses gratis. ISSN 0168-6496. The most abundant bacterial groups across all samples included candidate phylum AD3 (20%), Proteobacteria (18%), Verrucomicrobia (13%), Acidobacteria (12%), OD1 (9%), Chloroflexi (7%), Planctomycetes (5%), Actinobacteria (4%), Gemmatimonadetes (4%), Bacteroidetes (2%) and Nitrospirae (1%); all other groups had a relative abundance below 1% (Table 3; Fig. 1c). Only few archaeal sequences (0.5%) were detected in this dataset. The most abundant eukaryotic groups included the fungal phyla Ascomycota (46%), the former Zygomycota (22%) and Basidiomycota (7%), as well as Alveolata (6%) and Chlorophyta (3%). 
  • Legendre, Matthieu; Lartigue, Audrey; Bertaux, Lionel; Jeudy, Sandra; Bartoli, Julia; Lescot, Magali; Alempic, Jean-Marie; Ramus, Claire; Bruley, Christophe (22 September 2015). "In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5327–E5335. doi:10.1073/pnas.1510795112alt=Dapat diakses gratis. ISSN 0027-8424. PMC 4586845alt=Dapat diakses gratis. PMID 26351664. The saga of giant viruses (i.e. visible by light microscopy) started in 2003 with the discovery of Mimivirus. Two additional types of giant viruses infecting Acanthamoeba have been discovered since: the Pandoraviruses (2013) and Pithovirus sibericum (2014), the latter one revived from 30,000-y-old Siberian permafrost. We now describe Mollivirus sibericum, a fourth type of giant virus isolated from the same permafrost sample. These four types of giant virus exhibit different virion structures, sizes (0.6–1.5 µm), genome length (0.6–2.8 Mb), and replication cycles. Their origin and mode of evolution are the subject of conflicting hypotheses. The fact that two different viruses could be easily revived from prehistoric permafrost should be of concern in a context of global warming.