Sindrom XYY (Indonesian Wikipedia)

Analysis of information sources in references of the Wikipedia article "Sindrom XYY" in Indonesian language version.

refsWebsite
Global rank Indonesian rank
6th place
2nd place
1st place
1st place
2nd place
4th place
4th place
13th place
low place
low place
low place
low place

aaa.dk

archive.org

  • Milunsky, Jeff M. (2010). "Prenatal diagnosis of sex chromosome abnormalities". Dalam Milunsky, Aubrey; Milunsky, Jeff M. (eds.). Genetic disorders and the fetus: diagnosis, prevention and treatment (edisi ke-6th). Oxford: Wiley-Blackwell. hlm. 273–312. ISBN 1-4051-9087-6. The addition of a Y chromosome to a normal male chromosome constitution does not produce a discernible phenotype. Males with 47,XYY cannot be characterized by discriminating physical or behavioral features. The first diagnosis of this condition, therefore, was a karyotypic and not a phenotypic discovery.
    Pubertal development is normal and these men are usually fertile.
     
  • Gardner, R.J. McKinlay; Sutherland, Grant R. (2004). Chromosome abnormalities and genetic counseling (edisi ke-3rd). Oxford: Oxford University Press. hlm. 29–30, 42, 199, 207, 257, 263, 393, 424–430. ISBN 0-19-514960-2. From early meiotic studies, it was concluded that the extra Y was eliminated before the spermatocyte formed, with an X-Y bivalent usually seen at diakinesis, and more recent studies support this concept. However, FISH analyses of sperm, enabling hundreds of cells to be analyzed, have shown a very small increased faction of 24,YY spermatozoa in the ejaculate of XYY men (Table 12-1). Thus it appears the vast majority of spermatocytes lose the extra Y before entering meiosis, a very few XYY primary spermatocytes are able to slip through and produce YY (and XY) spermatozoa. These cytogenetic findings parallel the observation that XYY men have no discernible increase in risk to have children with a sex chromosome abnormality. A true increased risk of a fraction of a per cent could be distinguished only with the greatest of difficulty when the background population risk is of a similar order of magnitude. As for the autosomes, no convincing case exists for any increased risk for aneuploidy in the children of men with 47,XYY.
    To our knowledge, there is no report of a discernibly increased risk for the XYY male to have chromosomally abnormal children. A slight increase in gonosomal imbalances in sperm (Table 12-1) might nevertheless lead some to choose prenatal diagnosis.
     
  • Gardner, R.J. McKinlay; Sutherland, Grant R.; Shaffer, Lisa G. (2012). Chromosome abnormalities and genetic counseling (edisi ke-4th). Oxford: Oxford University Press. hlm. 9–10, 12, 36, 52, 221, 224, 230, 285–286, 293, 440–441, 477–480, 484. ISBN 978-0-19-537533-6. The two other conditions, XXX and XYY, apparently have little effect on fertility; furthermore, they are not discernibly associated with any increased risk for chromosomally abnormal offspring.
    While the IQ is in the normal range, it is usually lower than those of sibs or controls, and about half of XYY boys have a mild learning difficulty, and may display poor attention and impulsivity in the classroom.
     

doi.org

genetic.org

nih.gov

ncbi.nlm.nih.gov

web.archive.org