プロンプトエンジニアリング (Japanese Wikipedia)

Analysis of information sources in references of the Wikipedia article "プロンプトエンジニアリング" in Japanese language version.

refsWebsite
Global rank Japanese rank
69th place
227th place
2nd place
6th place
1,272nd place
1,494th place
18th place
107th place
low place
low place
1,559th place
1,682nd place
1,943rd place
3,910th place
7th place
63rd place
272nd place
304th place
616th place
2,168th place
low place
low place
low place
low place
low place
low place
low place
low place
175th place
751st place
low place
low place
low place
low place
low place
low place
low place
low place
low place
low place
187th place
440th place
low place
low place
896th place
2,100th place
low place
low place
5th place
19th place
low place
low place
786th place
818th place
low place
low place
551st place
1,605th place
low place
low place
low place
low place
low place
low place
3,700th place
8,453rd place
388th place
1,331st place
34th place
255th place
61st place
289th place
low place
low place

aclanthology.org

alignmentforum.org

  • Mesa-Optimization”. 17 May 2023閲覧。 “"Mesa-Optimization is the situation that occurs when a learned model (such as a neural network) is itself an optimizer."”

arstechnica.com

arxiv.org

  • Wei, Jason; Tay, Yi; Bommasani, Rishi; Raffel, Colin; Zoph, Barret; Borgeaud, Sebastian; Yogatama, Dani; Bosma, Maarten; Zhou, Denny; Metzler, Donald; Chi, Ed H.; Hashimoto, Tatsunori; Vinyals, Oriol; Liang, Percy; Dean, Jeff; Fedus, William (31 August 2022). "Emergent Abilities of Large Language Models". arXiv:2206.07682 [cs.CL]. In prompting, a pre-trained language model is given a prompt (e.g. a natural language instruction) of a task and completes the response without any further training or gradient updates to its parameters... The ability to perform a task via few-shot prompting is emergent when a model has random performance until a certain scale, after which performance increases to well-above random
  • Garg, Shivam; Tsipras, Dimitris; Liang, Percy; Valiant, Gregory (2022). "What Can Transformers Learn In-Context? A Case Study of Simple Function Classes". arXiv:2208.01066 [cs.CL]。
  • Caballero, Ethan; Gupta, Kshitij; Rish, Irina; Krueger, David (2022). "Broken Neural Scaling Laws". International Conference on Learning Representations (ICLR), 2023.
  • Wei, Jason; Tay, Yi; Bommasani, Rishi; Raffel, Colin; Zoph, Barret; Borgeaud, Sebastian; Yogatama, Dani; Bosma, Maarten; Zhou, Denny; Metzler, Donald; Chi, Ed H.; Hashimoto, Tatsunori; Vinyals, Oriol; Liang, Percy; Dean, Jeff; Fedus, William (31 August 2022). "Emergent Abilities of Large Language Models". arXiv:2206.07682 [cs.CL]。
  • Wei, Jason; Wang, Xuezhi; Schuurmans, Dale; Bosma, Maarten; Ichter, Brian; Xia, Fei; Chi, Ed H.; Le, Quoc V.; Zhou, Denny (31 October 2022). "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models" (英語). arXiv:2201.11903 [cs.CL]。
  • Johannes von Oswald; Niklasson, Eyvind; Randazzo, Ettore; Sacramento, Joテ」o; Mordvintsev, Alexander; Zhmoginov, Andrey; Vladymyrov, Max (2022). "Transformers learn in-context by gradient descent". arXiv:2212.07677 [cs.LG]. Thus we show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass
  • Garg, Shivam; Tsipras, Dimitris; Liang, Percy; Valiant, Gregory (2022). "What Can Transformers Learn In-Context? A Case Study of Simple Function Classes". arXiv:2208.01066 [cs.CL]. Training a model to perform in-context learning can be viewed as an instance of the more general learning-to-learn or meta-learning paradigm
  • Sanh, Victor; et al. (2021). "Multitask Prompted Training Enables Zero-Shot Task Generalization". arXiv:2110.08207 [cs.LG]。
  • Bach, Stephen H.; Sanh, Victor; Yong, Zheng-Xin; Webson, Albert; Raffel, Colin; Nayak, Nihal V.; Sharma, Abheesht; Kim, Taewoon; M Saiful Bari; Fevry, Thibault; Alyafeai, Zaid; Dey, Manan; Santilli, Andrea; Sun, Zhiqing; Ben-David, Srulik; Xu, Canwen; Chhablani, Gunjan; Wang, Han; Jason Alan Fries; Al-shaibani, Maged S.; Sharma, Shanya; Thakker, Urmish; Almubarak, Khalid; Tang, Xiangru; Radev, Dragomir; Mike Tian-Jian Jiang; Rush, Alexander M. (2022). "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts". arXiv:2202.01279 [cs.LG]。
  • Kojima, Takeshi; Shixiang Shane Gu; Reid, Machel; Matsuo, Yutaka; Iwasawa, Yusuke (2022). "Large Language Models are Zero-Shot Reasoners". arXiv:2205.11916 [cs.CL]。
  • Chung, Hyung Won; Hou, Le; Longpre, Shayne; Zoph, Barret; Tay, Yi; Fedus, William; Li, Yunxuan; Wang, Xuezhi; Dehghani, Mostafa; Brahma, Siddhartha; Webson, Albert; Gu, Shixiang Shane; Dai, Zhuyun; Suzgun, Mirac; Chen, Xinyun; Chowdhery, Aakanksha; Castro-Ros, Alex; Pellat, Marie; Robinson, Kevin; Valter, Dasha; Narang, Sharan; Mishra, Gaurav; Yu, Adams; Zhao, Vincent; Huang, Yanping; Dai, Andrew; Yu, Hongkun; Petrov, Slav; Chi, Ed H.; Dean, Jeff; Devlin, Jacob; Roberts, Adam; Zhou, Denny; Le, Quoc V.; Wei, Jason (2022). "Scaling Instruction-Finetuned Language Models". arXiv:2210.11416 [cs.LG]。
  • Zhou, Denny; Schテ、rli, Nathanael; Hou, Le; Wei, Jason; Scales, Nathan; Wang, Xuezhi; Schuurmans, Dale; Cui, Claire et al. (2022-05-01). Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. arXiv:2205.10625. https://ui.adsabs.harvard.edu/abs/2022arXiv220510625Z. ""...least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence."" 
  • Wang, Xuezhi; Wei, Jason; Schuurmans, Dale; Le, Quoc; Chi, Ed; Narang, Sharan; Chowdhery, Aakanksha; Zhou, Denny (1 March 2022). "Self-Consistency Improves Chain of Thought Reasoning in Language Models". arXiv:2203.11171 [cs.CL]。
  • Diao, Shizhe; Wang, Pengcheng; Lin, Yong; Zhang, Tong (1 February 2023). "Active Prompting with Chain-of-Thought for Large Language Models". arXiv:2302.12246 [cs.CL]。
  • Fu, Yao; Peng, Hao; Sabharwal, Ashish; Clark, Peter; Khot, Tushar (2022-10-01). Complexity-Based Prompting for Multi-Step Reasoning. arXiv:2210.00720. https://ui.adsabs.harvard.edu/abs/2022arXiv221000720F. 
  • Madaan, Aman; Tandon, Niket; Gupta, Prakhar; Hallinan, Skyler; Gao, Luyu; Wiegreffe, Sarah; Alon, Uri; Dziri, Nouha et al. (2023-03-01). Self-Refine: Iterative Refinement with Self-Feedback. arXiv:2303.17651. https://ui.adsabs.harvard.edu/abs/2023arXiv230317651M. 
  • Long, Jieyi (15 May 2023). "Large Language Model Guided Tree-of-Thought". arXiv:2305.08291 [cs.AI]。
  • Yao, Shunyu; Yu, Dian; Zhao, Jeffrey; Shafran, Izhak; Griffiths, Thomas L.; Cao, Yuan; Narasimhan, Karthik (17 May 2023). "Tree of Thoughts: Deliberate Problem Solving with Large Language Models". arXiv:2305.10601 [cs.CL]。
  • Jung, Jaehun; Qin, Lianhui; Welleck, Sean; Brahman, Faeze; Bhagavatula, Chandra; Le Bras, Ronan; Choi, Yejin (2022). "Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations". arXiv:2205.11822 [cs.CL]。
  • Li, Zekun; Peng, Baolin; He, Pengcheng; Galley, Michel; Gao, Jianfeng; Yan, Xifeng (2023). "Guiding Large Language Models via Directional Stimulus Prompting". arXiv:2302.11520 [cs.CL]. The directional stimulus serves as hints or cues for each input query to guide LLMs toward the desired output, such as keywords that the desired summary should include for summarization.
  • OpenAI (27 March 2023). "GPT-4 Technical Report". arXiv:2303.08774 [cs.CL]。 [See Figure 8.]
  • Lewis, Patrick; Perez, Ethan; Piktus, Aleksandra; Petroni, Fabio; Karpukhin, Vladimir; Goyal, Naman; Küttler, Heinrich; Lewis, Mike et al. (2020). “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”. Advances in Neural Information Processing Systems (Curran Associates, Inc.) 33: 9459-9474. arXiv:2005.11401. https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html. 
  • Zhou, Yongchao; Ioan Muresanu, Andrei; Han, Ziwen; Paster, Keiran; Pitis, Silviu; Chan, Harris; Ba, Jimmy (1 November 2022). "Large Language Models Are Human-Level Prompt Engineers". arXiv:2211.01910 [cs.LG]。
  • Zhang, Zhuosheng; Zhang, Aston; Li, Mu; Smola, Alex (1 October 2022). "Automatic Chain of Thought Prompting in Large Language Models". arXiv:2210.03493 [cs.CL]。
  • Gal, Rinon; Alaluf, Yuval; Atzmon, Yuval; Patashnik, Or; Bermano, Amit H.; Chechik, Gal; Cohen-Or, Daniel (2022). "An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion". arXiv:2208.01618. Using only 3-5 images of a user-provided concept, like an object or a style, we learn to represent it through new "words" in the embedding space of a frozen text-to-image model.
  • Kirillov, Alexander; Mintun, Eric; Ravi, Nikhila; Mao, Hanzi; Rolland, Chloe; Gustafson, Laura; Xiao, Tete; Whitehead, Spencer; Berg, Alexander C.; Lo, Wan-Yen; Dollár, Piotr; Girshick, Ross (1 April 2023). "Segment Anything". arXiv:2304.02643 [cs.CV]。
  • Lester, Brian; Al-Rfou, Rami; Constant, Noah (2021). “The Power of Scale for Parameter-Efficient Prompt Tuning”. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. pp. 3045-3059. arXiv:2104.08691. doi:10.18653/V1/2021.EMNLP-MAIN.243. ""In this work, we explore "prompt tuning," a simple yet effective mechanism for learning "soft prompts"...Unlike the discrete text prompts used by GPT-3, soft prompts are learned through back-propagation"" 
  • Sun, Simeng; Liu, Yang; Iter, Dan; Zhu, Chenguang; Iyyer, Mohit (2023). "How Does In-Context Learning Help Prompt Tuning?". arXiv:2302.11521 [cs.CL]。
  • Greshake, Kai; Abdelnabi, Sahar; Mishra, Shailesh; Endres, Christoph; Holz, Thorsten; Fritz, Mario (1 February 2023). "Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection". arXiv:2302.12173 [cs.CR]。

claid.ai

cnet.com

contractnerds.com

doi.org

github.blog

googleblog.com

ai.googleblog.com

hackaday.com

harvard.edu

ui.adsabs.harvard.edu

learnprompting.org

masterofcode.com

medium.com

midjourney.com

docs.midjourney.com

  • Prompts”. 2023年8月14日閲覧。
  • Prompts”. 2023年8月14日閲覧。
  • Prompts”. 2023年8月14日閲覧。

minimaxir.com

nccgroup.com

research.nccgroup.com

neurips.cc

proceedings.neurips.cc

nytimes.com

openai.com

cdn.openai.com

openai.com

  • OpenAI (2022年11月30日). “Introducing ChatGPT”. OpenAI Blog. 2023年8月16日閲覧。 “"what is the fermat's little theorem"”

platform.openai.com

openart.ai

cdn.openart.ai

  • Stable Diffusion Prompt Book” (2022年10月28日). 2023年8月7日閲覧。 “"Prompt engineering is the process of structuring words that can be interpreted and understood by a text-to-image model. Think of it as the language you need to speak in order to tell an AI model what to draw."”

scientificamerican.com

  • How AI Knows Things No One Told It”. Scientific American. 17 May 2023閲覧。 “"By the time you type a query into ChatGPT, the network should be fixed; unlike humans, it should not continue to learn. So it came as a surprise that LLMs do, in fact, learn from their users' prompts—an ability known as in-context learning."”

searchenginejournal.com

simonwillison.net

stable-diffusion-art.com

techcrunch.com

  • Wiggers, Kyle (2023年6月12日). “Meta open sources an AI-powered music generator”. TechCrunch. 2023年8月15日閲覧。 “Next, I gave a more complicated prompt to attempt to throw MusicGen for a loop: "Lo-fi slow BPM electro chill with organic samples."”

technologyreview.com

theregister.com

time.com

venturebeat.com

vice.com

vulcan.io

washingtonpost.com

worldcat.org

search.worldcat.org

zapier.com

  • Robinson, Reid (August 3, 2023). “How to write an effective GPT-3 or GPT-4 prompt”. Zapier. 2023年8月14日閲覧。 “"Basic prompt: 'Write a poem about leaves falling.' Better prompt: 'Write a poem in the style of Edgar Allan Poe about leaves falling.'”

zdnet.com