Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (2019). “An experimental proof that resistance-switching memories are not memristors”. Advanced Electronic Materials. arXiv:1909.07238. doi:10.1002/aelm.202000010.
Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B. (21 November 2017). “Memristor Equations: Incomplete Physics and Undefined Passivity/Activity”. Fluctuation and Noise Letters16 (4): 1771001–519. arXiv:1703.09064. Bibcode: 2017FNL....1671001S. doi:10.1142/S0219477517710018.
Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (2019). “An experimental proof that resistance-switching memories are not memristors”. Advanced Electronic Materials. arXiv:1909.07238. doi:10.1002/aelm.202000010.
Meuffels, P.; Soni, R. (2012). "Fundamental Issues and Problems in the Realization of Memristors". arXiv:1207.7319 [cond-mat.mes-hall]。
Linn, E.; Siemon, A.; Waser, R.; Menzel, S. (23 March 2014). “Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices”. IEEE Transactions on Circuits and Systems I: Regular Papers61 (8): 2402–2410. arXiv:1403.5801. Bibcode: 2014arXiv1403.5801L. doi:10.1109/TCSI.2014.2332261.
Kavehei, O.; Iqbal, A.; Kim, Y.S.; Eshraghian, K.; Al-Sarawi, S. F.; Abbott, D. (2010). “The fourth element: characteristics, modelling and electromagnetic theory of the memristor”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences466 (2120): 2175–2202. arXiv:1002.3210. Bibcode: 2010RSPSA.466.2175K. doi:10.1098/rspa.2009.0553.
Erokhin, V.; Fontana, M. P. (2008). "Electrochemically controlled polymeric device: A memristor (and more) found two years ago". arXiv:0807.0333 [cond-mat.soft]。
An; Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C. et al. (2010). “An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse”. Advanced Functional Materials20 (2): 330–337. arXiv:0907.2540. doi:10.1002/adfm.200901335.
Chanthbouala, A.; Matsumoto, R.; Grollier, J.; Cros, V.; Anane, A.; Fert, A.; Khvalkovskiy, A. V.; Zvezdin, K. A. et al. (10 April 2011). “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities”. Nature Physics7 (8): 626–630. arXiv:1102.2106. Bibcode: 2011NatPh...7..626C. doi:10.1038/nphys1968.
Campbell, K. (January 2017), “Self-directed channel memristor for high temperature operation”, Microelectronics Journal59: 10–14, arXiv:1608.05357, doi:10.1016/j.mejo.2016.11.006
Merrikh-Bayat, F.; Bagheri-Shouraki, S. (2011). "Efficient neuro-fuzzy system and its Memristor Crossbar-based Hardware Implementation". arXiv:1103.1156 [cs.AI]。
Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (2019). “An experimental proof that resistance-switching memories are not memristors”. Advanced Electronic Materials. arXiv:1909.07238. doi:10.1002/aelm.202000010.
Chua, L. (1971). “Memristor-The missing circuit element”. IEEE Transactions on Circuit Theory18 (5): 507–519. doi:10.1109/TCT.1971.1083337.
Pedersen, N. F.; Finnegan, T. F.; Langenberg, D. N. (1974). “Evidence for the Existence of the Josephson Quasiparticle-Pair Interference Current”. Low Temperature Physics-LT 13. Boston, MA: Springer US. pp. 268–271. doi:10.1007/978-1-4684-2688-5_52. ISBN978-1-4684-2690-8
Muthuswamy, B.; Jevtic, J.; Iu, H. H. C.; Subramaniam, C. K.; Ganesan, K.; Sankaranarayanan, V.; Sethupathi, K.; Kim, H. et al. (2014). “Memristor modelling”. 2014 IEEE International Symposium on Circuits and Systems (ISCAS). pp. 490–493. doi:10.1109/ISCAS.2014.6865179. ISBN978-1-4799-3432-4
Chua, L. O.; Tseng, C. (1974), “A memristive circuit model for p-n junction diodes”, International Journal of Circuit Theory and Applications2 (4): 367–389, doi:10.1002/cta.4490020406
Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B. (21 November 2017). “Memristor Equations: Incomplete Physics and Undefined Passivity/Activity”. Fluctuation and Noise Letters16 (4): 1771001–519. arXiv:1703.09064. Bibcode: 2017FNL....1671001S. doi:10.1142/S0219477517710018.
Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (2019). “An experimental proof that resistance-switching memories are not memristors”. Advanced Electronic Materials. arXiv:1909.07238. doi:10.1002/aelm.202000010.
Zidan, Mohammed A.; Strachan, John Paul; Lu, Wei D. (2018-01-08). “The future of electronics based on memristive systems”. Nature Electronics1 (1): 22–29. doi:10.1038/s41928-017-0006-8.
Meuffels, P.; Schroeder, H. (2011), “Comment on "Exponential ionic drift: fast switching and low volatility of thin-film memristors" by D. B. Strukov and R. S. Williams in Appl. Phys. A (2009) 94: 515–519”, Applied Physics A105 (1): 65–67, Bibcode: 2011ApPhA.105...65M, doi:10.1007/s00339-011-6578-7
Kish, Laszlo B.; Granqvist, Claes G.; Khatri, Sunil P.; Wen, He (2014). “Demons: Maxwell's demon, Szilard's engine and Landauer's erasure–dissipation”. International Journal of Modern Physics: Conference Series33: 1460364. arXiv:1412.2166. Bibcode: 2014IJMPS..3360364K. doi:10.1142/s2010194514603640.
Kish, L. B.; Khatri, S. P.; Granqvist, C. G.; Smulko, J. M. (2015). “Critical remarks on Landauer's principle of erasure-dissipation: Including notes on Maxwell demons and Szilard engines”. 2015 International Conference on Noise and Fluctuations (ICNF). pp. 1–4. doi:10.1109/ICNF.2015.7288632. ISBN978-1-4673-8335-6
Linn, E.; Siemon, A.; Waser, R.; Menzel, S. (23 March 2014). “Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices”. IEEE Transactions on Circuits and Systems I: Regular Papers61 (8): 2402–2410. arXiv:1403.5801. Bibcode: 2014arXiv1403.5801L. doi:10.1109/TCSI.2014.2332261.
Kavehei, O.; Iqbal, A.; Kim, Y.S.; Eshraghian, K.; Al-Sarawi, S. F.; Abbott, D. (2010). “The fourth element: characteristics, modelling and electromagnetic theory of the memristor”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences466 (2120): 2175–2202. arXiv:1002.3210. Bibcode: 2010RSPSA.466.2175K. doi:10.1098/rspa.2009.0553.
Krieger, J. H.; Spitzer, S. M. (2004), “Non-traditional, Non-volatile Memory Based on Switching and Retention Phenomena in Polymeric Thin Films”, Proceedings of the 2004 Non-Volatile Memory Technology Symposium, IEEE, p. 121, doi:10.1109/NVMT.2004.1380823, ISBN978-0-7803-8726-3
An; Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C. et al. (2010). “An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse”. Advanced Functional Materials20 (2): 330–337. arXiv:0907.2540. doi:10.1002/adfm.200901335.
Ageev, O. A.; Blinov, Yu F.; Il’in, O. I.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A. (11 December 2013). “Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy”. Technical Physics58 (12): 1831–1836. Bibcode: 2013JTePh..58.1831A. doi:10.1134/S1063784213120025.
Il'ina, Marina V.; Il'in, Oleg I.; Blinov, Yuriy F.; Smirnov, Vladimir A.; Kolomiytsev, Alexey S.; Fedotov, Alexander A.; Konoplev, Boris G.; Ageev, Oleg A. (October 2017). “Memristive switching mechanism of vertically aligned carbon nanotubes”. Carbon123: 514–524. Bibcode: 2017Carbo.123..514I. doi:10.1016/j.carbon.2017.07.090.
Park, Youngjun; Kim, Min-Kyu; Lee, Jang-Sik (2020-07-16). “Emerging memory devices for artificial synapses”. Journal of Materials Chemistry C8 (27): 9163–9183. doi:10.1039/D0TC01500H.
Raeis-Hosseini, Niloufar; Park, Youngjun; Lee, Jang-Sik (2018). “Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spike-Timing-Dependent Plasticity”. Advanced Functional Materials28 (31): 1800553. doi:10.1002/adfm.201800553.
Park, Youngjun; Lee, Jang-Sik (2017-09-26). “Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials”. ACS Nano11 (9): 8962–8969. doi:10.1021/acsnano.7b03347. PMID28837313.
Milano, G.; Porro, S.; Valov, I.; Ricciardi, C. (2019). “Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires”. Advanced Electronic Materials5 (9): 1800909. doi:10.1002/aelm.201800909.
Chanthbouala, A.; Matsumoto, R.; Grollier, J.; Cros, V.; Anane, A.; Fert, A.; Khvalkovskiy, A. V.; Zvezdin, K. A. et al. (10 April 2011). “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities”. Nature Physics7 (8): 626–630. arXiv:1102.2106. Bibcode: 2011NatPh...7..626C. doi:10.1038/nphys1968.
Bowen, M.; Maurice, J.-L.; Barthe´le´my, A.; Prod’homme, P.; Jacquet, E.; Contour, J.-P.; Imhoff, D.; Colliex, C. (2006). “Bias-crafted magnetic tunnel junctions with bistable spin-dependent states”. Applied Physics Letters89 (10): 103517. Bibcode: 2006ApPhL..89j3517B. doi:10.1063/1.2345592.
Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G. et al. (2008). “Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions”. Applied Physics Letters92 (21): 212115. Bibcode: 2008ApPhL..92u2115H. doi:10.1063/1.2938696.
Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P. et al. (2014-08-04), “Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO”, Nature Communications5: 4547, Bibcode: 2014NatCo...5.4547S, doi:10.1038/ncomms5547, PMID25088937
Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S. et al. (2010-02-26), “Ferroelectric Control of Spin Polarization”, Science327 (5969): 1106–1110, Bibcode: 2010Sci...327.1106G, doi:10.1126/science.1184028, PMID20075211
Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. (2012-02-26), “Reversible electrical switching of spin polarization in multiferroic tunnel junctions”, Nature Materials11 (4): 289–293, Bibcode: 2012NatMa..11..289P, doi:10.1038/nmat3254, PMID22367005
Campbell, K. (January 2017), “Self-directed channel memristor for high temperature operation”, Microelectronics Journal59: 10–14, arXiv:1608.05357, doi:10.1016/j.mejo.2016.11.006
Dong, Zhekang; Sing Lai, Chun; He, Yufei; Qi, Donglian; Duan, Shukai (1 November 2019). “Hybrid dual-complementary metal–oxide–semiconductor/memristor synapse-based neural network with its applications in image super-resolution”. IET Circuits, Devices & Systems13 (8): 1241–1248. doi:10.1049/iet-cds.2018.5062.
Chattopadhyay, A.; Rakosi, Z. (2011). “Combinational logic synthesis for material implication”. 2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip. pp. 200. doi:10.1109/VLSISoC.2011.6081665. ISBN978-1-4577-0170-2
Snider, G. (2011), “From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain”, IEEE Computer44 (2): 21–28, doi:10.1109/MC.2011.48
Barella, M. (2016), “LabOSat: Low cost measurement platform designed for hazardous environments”, 2016 Seventh Argentine Conference on Embedded Systems (CASE), pp. 1–6, doi:10.1109/SASE-CASE.2016.7968107, ISBN978-987-46297-0-8
Penfield Jr, Paul L; Freund, Robert W; Kyhl, Robert L; Brodsky, Wesley G; Staelin, David H (15 April 1974). [httpc://hdl.handle.net/1721.1/56460 Microwave and Millimeter Wave Techniques] (Report). Massachusetts Institute of Technology. Research Laboratory of Electronics. Quarterly Progress Report, no.113. pp. 31–32. hdl:1721.1/56460。
Sundqvist, Kyle M.; Ferry, David K.; Kish, Laszlo B. (21 November 2017). “Memristor Equations: Incomplete Physics and Undefined Passivity/Activity”. Fluctuation and Noise Letters16 (4): 1771001–519. arXiv:1703.09064. Bibcode: 2017FNL....1671001S. doi:10.1142/S0219477517710018.
Meuffels, P.; Schroeder, H. (2011), “Comment on "Exponential ionic drift: fast switching and low volatility of thin-film memristors" by D. B. Strukov and R. S. Williams in Appl. Phys. A (2009) 94: 515–519”, Applied Physics A105 (1): 65–67, Bibcode: 2011ApPhA.105...65M, doi:10.1007/s00339-011-6578-7
Linn, E.; Siemon, A.; Waser, R.; Menzel, S. (23 March 2014). “Applicability of Well-Established Memristive Models for Simulations of Resistive Switching Devices”. IEEE Transactions on Circuits and Systems I: Regular Papers61 (8): 2402–2410. arXiv:1403.5801. Bibcode: 2014arXiv1403.5801L. doi:10.1109/TCSI.2014.2332261.
Kavehei, O.; Iqbal, A.; Kim, Y.S.; Eshraghian, K.; Al-Sarawi, S. F.; Abbott, D. (2010). “The fourth element: characteristics, modelling and electromagnetic theory of the memristor”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences466 (2120): 2175–2202. arXiv:1002.3210. Bibcode: 2010RSPSA.466.2175K. doi:10.1098/rspa.2009.0553.
Ageev, O. A.; Blinov, Yu F.; Il’in, O. I.; Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Fedotov, A. A. (11 December 2013). “Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy”. Technical Physics58 (12): 1831–1836. Bibcode: 2013JTePh..58.1831A. doi:10.1134/S1063784213120025.
Il'ina, Marina V.; Il'in, Oleg I.; Blinov, Yuriy F.; Smirnov, Vladimir A.; Kolomiytsev, Alexey S.; Fedotov, Alexander A.; Konoplev, Boris G.; Ageev, Oleg A. (October 2017). “Memristive switching mechanism of vertically aligned carbon nanotubes”. Carbon123: 514–524. Bibcode: 2017Carbo.123..514I. doi:10.1016/j.carbon.2017.07.090.
Chanthbouala, A.; Matsumoto, R.; Grollier, J.; Cros, V.; Anane, A.; Fert, A.; Khvalkovskiy, A. V.; Zvezdin, K. A. et al. (10 April 2011). “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities”. Nature Physics7 (8): 626–630. arXiv:1102.2106. Bibcode: 2011NatPh...7..626C. doi:10.1038/nphys1968.
Bowen, M.; Maurice, J.-L.; Barthe´le´my, A.; Prod’homme, P.; Jacquet, E.; Contour, J.-P.; Imhoff, D.; Colliex, C. (2006). “Bias-crafted magnetic tunnel junctions with bistable spin-dependent states”. Applied Physics Letters89 (10): 103517. Bibcode: 2006ApPhL..89j3517B. doi:10.1063/1.2345592.
Halley, D.; Majjad, H.; Bowen, M.; Najjari, N.; Henry, Y.; Ulhaq-Bouillet, C.; Weber, W.; Bertoni, G. et al. (2008). “Electrical switching in Fe/Cr/MgO/Fe magnetic tunnel junctions”. Applied Physics Letters92 (21): 212115. Bibcode: 2008ApPhL..92u2115H. doi:10.1063/1.2938696.
Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P. et al. (2014-08-04), “Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO”, Nature Communications5: 4547, Bibcode: 2014NatCo...5.4547S, doi:10.1038/ncomms5547, PMID25088937
Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S. et al. (2010-02-26), “Ferroelectric Control of Spin Polarization”, Science327 (5969): 1106–1110, Bibcode: 2010Sci...327.1106G, doi:10.1126/science.1184028, PMID20075211
Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. (2012-02-26), “Reversible electrical switching of spin polarization in multiferroic tunnel junctions”, Nature Materials11 (4): 289–293, Bibcode: 2012NatMa..11..289P, doi:10.1038/nmat3254, PMID22367005
Park, Youngjun; Lee, Jang-Sik (2017-09-26). “Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials”. ACS Nano11 (9): 8962–8969. doi:10.1021/acsnano.7b03347. PMID28837313.
Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P. et al. (2014-08-04), “Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO”, Nature Communications5: 4547, Bibcode: 2014NatCo...5.4547S, doi:10.1038/ncomms5547, PMID25088937
Garcia, V.; Bibes, M.; Bocher, L.; Valencia, S.; Kronast, F.; Crassous, A.; Moya, X.; Enouz-Vedrenne, S. et al. (2010-02-26), “Ferroelectric Control of Spin Polarization”, Science327 (5969): 1106–1110, Bibcode: 2010Sci...327.1106G, doi:10.1126/science.1184028, PMID20075211
Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. (2012-02-26), “Reversible electrical switching of spin polarization in multiferroic tunnel junctions”, Nature Materials11 (4): 289–293, Bibcode: 2012NatMa..11..289P, doi:10.1038/nmat3254, PMID22367005
Stefanovich, Genrikh; Cho, Choong-rae; Yoo, In-kyeong; Lee, Eun-hong; Cho, Sung-il; Moon, Chang-wook (2006) "Electrode structure having at least two oxide layers and non-volatile memory device having the same" アメリカ合衆国特許第 7,417,271号
Snider, Gregory Stuart (2004) "Architecture and methods for computing with reconfigurable resistor crossbars" アメリカ合衆国特許第 7,203,789号
Mouttet, Blaise Laurent (2006) "Programmable crossbar signal processor" アメリカ合衆国特許第 7,302,513号