“Mutational analyses of the human Rad51-Tyr315 residue, a site for phosphorylation in leukaemia cells”. Genes to Cells9 (9): 781–90. (September 2004). doi:10.1111/j.1365-2443.2004.00772.x. PMID15330855.
“BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP”. Carcinogenesis32 (1): 27–34. (January 2011). doi:10.1093/carcin/bgq216. PMID20974687.
“Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase”. J. Biol. Chem.278 (24): 21685–92. (June 2003). doi:10.1074/jbc.M301447200. PMID12672821.
“Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth”. Oncogene14 (2): 233–41. (January 1997). doi:10.1038/sj.onc.1200822. PMID9010225.
“Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer's disease”. Gene271 (2): 159–69. (June 2001). doi:10.1016/S0378-1119(01)00521-2. PMID11418237.
“Functional interaction between the c-Abl and Arg protein-tyrosine kinases in the oxidative stress response”. J. Biol. Chem.278 (15): 12961–7. (April 2003). doi:10.1074/jbc.M300058200. PMID12569093.
“Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity”. Genes Dev.9 (21): 2569–82. (November 1995). doi:10.1101/gad.9.21.2569. PMID7590236.
“Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl”. J. Biol. Chem.274 (18): 12748–52. (April 1999). doi:10.1074/jbc.274.18.12748. PMID10212258.
“Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks”. J. Biol. Chem.276 (31): 29282–91. (August 2001). doi:10.1074/jbc.M011534200. PMID11375976.
“p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene”. J. Biol. Chem.271 (41): 25198–203. (October 1996). doi:10.1074/jbc.271.41.25198. PMID8810278.
“Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases”. Curr. Biol.5 (3): 296–305. (March 1995). doi:10.1016/S0960-9822(95)00060-1. PMID7780740.
“BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner”. Cell66 (1): 161–71. (July 1991). doi:10.1016/0092-8674(91)90148-R. PMID1712671.
“Catalase activity is regulated by c-Abl and Arg in the oxidative stress response”. J. Biol. Chem.278 (32): 29667–75. (August 2003). doi:10.1074/jbc.M301292200. PMID12777400.
“Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor”. Oncogene20 (30): 4058–69. (July 2001). doi:10.1038/sj.onc.1204528. PMID11494134.
“Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites”. Genes Dev.8 (7): 783–95. (April 1994). doi:10.1101/gad.8.7.783. PMID7926767.
“Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation”. Blood89 (1): 297–306. (January 1997). doi:10.1182/blood.V89.1.297. PMID8978305.
“Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok”. Cell88 (2): 205–11. (January 1997). doi:10.1016/S0092-8674(00)81841-3. PMID9008161.
“Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor”. Oncogene20 (30): 3995–4006. (July 2001). doi:10.1038/sj.onc.1204524. PMID11494128.
“Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases”. J. Biol. Chem.278 (41): 39609–14. (October 2003). doi:10.1074/jbc.M305770200. PMID12893824.
“The SH2-containing adapter protein GRB10 interacts with BCR-ABL”. Oncogene17 (8): 941–8. (August 1998). doi:10.1038/sj.onc.1202024. PMID9747873.
“Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains”. J. Biol. Chem.272 (5): 2659–67. (January 1997). doi:10.1074/jbc.272.5.2659. PMID9006901.
“Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase”. J. Biol. Chem.275 (15): 10779–87. (April 2000). doi:10.1074/jbc.275.15.10779. PMID10753870.
“The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr”. J. Biol. Chem.272 (52): 33260–70. (December 1997). doi:10.1074/jbc.272.52.33260. PMID9407116.
“Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation”. Mol. Cell6 (6): 1413–23. (December 2000). doi:10.1016/S1097-2765(00)00138-6. PMID11163214.
“Interaction of BCR-ABL with the retinoblastoma protein in Philadelphia chromosome-positive cell lines”. Int. J. Hematol.65 (2): 115–21. (February 1997). doi:10.1016/S0925-5710(96)00539-7. PMID9071815.
“A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle”. Cell75 (4): 779–90. (November 1993). doi:10.1016/0092-8674(93)90497-E. PMID8242749.
“The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes”. Oncogene16 (14): 1779–88. (April 1998). doi:10.1038/sj.onc.1201708. PMID9583676.
“A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells”. Blood93 (8): 2707–20. (April 1999). doi:10.1182/blood.V93.8.2707. PMID10194451.
“ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks”. J. Biol. Chem.272 (28): 17542–50. (July 1997). doi:10.1074/jbc.272.28.17542. PMID9211900.
“Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton”. J. Biol. Chem.273 (22): 13681–92. (May 1998). doi:10.1074/jbc.273.22.13681. PMID9593709.
“Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway”. J. Biol. Chem.277 (14): 12437–45. (April 2002). doi:10.1074/jbc.M112397200. PMID11790798.
“The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation”. Hum. Mol. Genet.13 (15): 1535–49. (August 2004). doi:10.1093/hmg/ddh167. PMID15175272.
“Lymphosarcoma: virus-induced thymic-independent disease in mice”. Cancer Research30 (8): 2213–22. (August 1970). PMID4318922.
“Mutational analyses of the human Rad51-Tyr315 residue, a site for phosphorylation in leukaemia cells”. Genes to Cells9 (9): 781–90. (September 2004). doi:10.1111/j.1365-2443.2004.00772.x. PMID15330855.
“BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP”. Carcinogenesis32 (1): 27–34. (January 2011). doi:10.1093/carcin/bgq216. PMID20974687.
“Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase”. J. Biol. Chem.278 (24): 21685–92. (June 2003). doi:10.1074/jbc.M301447200. PMID12672821.
“Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth”. Oncogene14 (2): 233–41. (January 1997). doi:10.1038/sj.onc.1200822. PMID9010225.
“Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer's disease”. Gene271 (2): 159–69. (June 2001). doi:10.1016/S0378-1119(01)00521-2. PMID11418237.
“Functional interaction between the c-Abl and Arg protein-tyrosine kinases in the oxidative stress response”. J. Biol. Chem.278 (15): 12961–7. (April 2003). doi:10.1074/jbc.M300058200. PMID12569093.
“Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity”. Genes Dev.9 (21): 2569–82. (November 1995). doi:10.1101/gad.9.21.2569. PMID7590236.
“Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl”. J. Biol. Chem.274 (18): 12748–52. (April 1999). doi:10.1074/jbc.274.18.12748. PMID10212258.
“Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks”. J. Biol. Chem.276 (31): 29282–91. (August 2001). doi:10.1074/jbc.M011534200. PMID11375976.
“p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene”. J. Biol. Chem.271 (41): 25198–203. (October 1996). doi:10.1074/jbc.271.41.25198. PMID8810278.
“Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases”. Curr. Biol.5 (3): 296–305. (March 1995). doi:10.1016/S0960-9822(95)00060-1. PMID7780740.
“Bcr and Abl interaction: oncogenic activation of c-Abl by sequestering Bcr”. Cancer Res.63 (2): 298–303. (January 2003). PMID12543778.
“BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner”. Cell66 (1): 161–71. (July 1991). doi:10.1016/0092-8674(91)90148-R. PMID1712671.
“Catalase activity is regulated by c-Abl and Arg in the oxidative stress response”. J. Biol. Chem.278 (32): 29667–75. (August 2003). doi:10.1074/jbc.M301292200. PMID12777400.
“Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor”. Oncogene20 (30): 4058–69. (July 2001). doi:10.1038/sj.onc.1204528. PMID11494134.
“Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites”. Genes Dev.8 (7): 783–95. (April 1994). doi:10.1101/gad.8.7.783. PMID7926767.
“Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation”. Blood89 (1): 297–306. (January 1997). doi:10.1182/blood.V89.1.297. PMID8978305.
“Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI)”. J. Immunol.161 (10): 5555–63. (November 1998). PMID9820532.
“Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok”. Cell88 (2): 205–11. (January 1997). doi:10.1016/S0092-8674(00)81841-3. PMID9008161.
“Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor”. Oncogene20 (30): 3995–4006. (July 2001). doi:10.1038/sj.onc.1204524. PMID11494128.
“Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases”. J. Biol. Chem.278 (41): 39609–14. (October 2003). doi:10.1074/jbc.M305770200. PMID12893824.
“The SH2-containing adapter protein GRB10 interacts with BCR-ABL”. Oncogene17 (8): 941–8. (August 1998). doi:10.1038/sj.onc.1202024. PMID9747873.
“Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains”. J. Biol. Chem.272 (5): 2659–67. (January 1997). doi:10.1074/jbc.272.5.2659. PMID9006901.
“Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase”. J. Biol. Chem.275 (15): 10779–87. (April 2000). doi:10.1074/jbc.275.15.10779. PMID10753870.
“The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr”. J. Biol. Chem.272 (52): 33260–70. (December 1997). doi:10.1074/jbc.272.52.33260. PMID9407116.
“Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation”. Mol. Cell6 (6): 1413–23. (December 2000). doi:10.1016/S1097-2765(00)00138-6. PMID11163214.
“Interaction of BCR-ABL with the retinoblastoma protein in Philadelphia chromosome-positive cell lines”. Int. J. Hematol.65 (2): 115–21. (February 1997). doi:10.1016/S0925-5710(96)00539-7. PMID9071815.
“A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle”. Cell75 (4): 779–90. (November 1993). doi:10.1016/0092-8674(93)90497-E. PMID8242749.
“The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes”. Oncogene16 (14): 1779–88. (April 1998). doi:10.1038/sj.onc.1201708. PMID9583676.
“A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells”. Blood93 (8): 2707–20. (April 1999). doi:10.1182/blood.V93.8.2707. PMID10194451.
“ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks”. J. Biol. Chem.272 (28): 17542–50. (July 1997). doi:10.1074/jbc.272.28.17542. PMID9211900.
“Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton”. J. Biol. Chem.273 (22): 13681–92. (May 1998). doi:10.1074/jbc.273.22.13681. PMID9593709.
“Association of Bcr-Abl with the proto-oncogene Vav is implicated in activation of the Rac-1 pathway”. J. Biol. Chem.277 (14): 12437–45. (April 2002). doi:10.1074/jbc.M112397200. PMID11790798.
“The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation”. Hum. Mol. Genet.13 (15): 1535–49. (August 2004). doi:10.1093/hmg/ddh167. PMID15175272.