“Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation”. Cell47 (1): 19–28. (Oct 1986). doi:10.1016/0092-8674(86)90362-4. PMID2875799.
“Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides”. European Journal of Pharmaceutics and Biopharmaceutics54 (3): 263–9. (Nov 2002). doi:10.1016/S0939-6411(02)00060-7. PMID12445555.
“Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia”. The New England Journal of Medicine374 (4): 311–22. (January 2016). doi:10.1056/NEJMoa1513257. PMID26639348.
“Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3”. Cell116 (4): 527–40. (Feb 2004). doi:10.1016/s0092-8674(04)00162-x. PMID14980220.
“Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening”. Journal of Medicinal Chemistry44 (25): 4313–24. (Dec 2001). doi:10.1021/jm010016f. PMID11728179.
“BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members”. Molecular Endocrinology12 (9): 1432–40. (Sep 1998). doi:10.1210/mend.12.9.0166. PMID9731710.
“Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2”. Cancer Research64 (21): 7947–53. (Nov 2004). doi:10.1158/0008-5472.CAN-04-0945. PMID15520201.
“BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis”. Biochemical and Biophysical Research Communications308 (2): 379–85. (Aug 2003). doi:10.1016/s0006-291x(03)01387-1. PMID12901880.
“Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins”. Cell79 (2): 341–51. (Oct 1994). doi:10.1016/0092-8674(94)90202-X. PMID7954800.
“BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites”. The Journal of Biological Chemistry275 (2): 1439–48. (Jan 2000). doi:10.1074/jbc.275.2.1439. PMID10625696.
“Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death”. Cell80 (2): 285–91. (Jan 1995). doi:10.1016/0092-8674(95)90411-5. PMID7834748.
“Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis”. Nature Cell Biology2 (1): 1–6. (Jan 2000). doi:10.1038/71316. PMID10620799.
“Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death”. Cell74 (4): 609–19. (Aug 1993). doi:10.1016/0092-8674(93)90509-O. PMID8358790.
“Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members”. The Journal of Biological Chemistry277 (30): 27217–26. (Jul 2002). doi:10.1074/jbc.M202945200. PMID12000759.
“Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria”. The Journal of Biological Chemistry277 (16): 13430–7. (Apr 2002). doi:10.1074/jbc.M108029200. PMID11832478.
“Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation”. The Journal of Biological Chemistry279 (38): 40209–19. (Sep 2004). doi:10.1074/jbc.M404056200. PMID15210690.
“Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A”. The Journal of Biological Chemistry273 (51): 34157–63. (Dec 1998). doi:10.1074/jbc.273.51.34157. PMID9852076.
“Presenilin 1 protein directly interacts with Bcl-2”. The Journal of Biological Chemistry274 (43): 30764–9. (Oct 1999). doi:10.1074/jbc.274.43.30764. PMID10521466.
“A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity”. Oncogene19 (50): 5736–46. (Nov 2000). doi:10.1038/sj.onc.1203948. PMID11126360.
“Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation”. Cell47 (1): 19–28. (Oct 1986). doi:10.1016/0092-8674(86)90362-4. PMID2875799.
“Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides”. European Journal of Pharmaceutics and Biopharmaceutics54 (3): 263–9. (Nov 2002). doi:10.1016/S0939-6411(02)00060-7. PMID12445555.
“Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia”. The New England Journal of Medicine374 (4): 311–22. (January 2016). doi:10.1056/NEJMoa1513257. PMID26639348.
“Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3”. Cell116 (4): 527–40. (Feb 2004). doi:10.1016/s0092-8674(04)00162-x. PMID14980220.
“Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening”. Journal of Medicinal Chemistry44 (25): 4313–24. (Dec 2001). doi:10.1021/jm010016f. PMID11728179.
“BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members”. Molecular Endocrinology12 (9): 1432–40. (Sep 1998). doi:10.1210/mend.12.9.0166. PMID9731710.
“Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2”. Cancer Research64 (21): 7947–53. (Nov 2004). doi:10.1158/0008-5472.CAN-04-0945. PMID15520201.
“BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis”. Biochemical and Biophysical Research Communications308 (2): 379–85. (Aug 2003). doi:10.1016/s0006-291x(03)01387-1. PMID12901880.
“Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins”. Cell79 (2): 341–51. (Oct 1994). doi:10.1016/0092-8674(94)90202-X. PMID7954800.
“BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites”. The Journal of Biological Chemistry275 (2): 1439–48. (Jan 2000). doi:10.1074/jbc.275.2.1439. PMID10625696.
“BNIP3alpha: a human homolog of mitochondrial proapoptotic protein BNIP3”. Cancer Research59 (3): 533–7. (Feb 1999). PMID9973195.
“Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death”. Cell80 (2): 285–91. (Jan 1995). doi:10.1016/0092-8674(95)90411-5. PMID7834748.
“Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis”. Nature Cell Biology2 (1): 1–6. (Jan 2000). doi:10.1038/71316. PMID10620799.
“Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death”. Cell74 (4): 609–19. (Aug 1993). doi:10.1016/0092-8674(93)90509-O. PMID8358790.
“Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members”. The Journal of Biological Chemistry277 (30): 27217–26. (Jul 2002). doi:10.1074/jbc.M202945200. PMID12000759.
“Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2”. Cancer Research61 (12): 4864–72. (Jun 2001). PMID11406564.
“Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria”. The Journal of Biological Chemistry277 (16): 13430–7. (Apr 2002). doi:10.1074/jbc.M108029200. PMID11832478.
“Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation”. The Journal of Biological Chemistry279 (38): 40209–19. (Sep 2004). doi:10.1074/jbc.M404056200. PMID15210690.
“Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A”. The Journal of Biological Chemistry273 (51): 34157–63. (Dec 1998). doi:10.1074/jbc.273.51.34157. PMID9852076.
“Presenilin 1 protein directly interacts with Bcl-2”. The Journal of Biological Chemistry274 (43): 30764–9. (Oct 1999). doi:10.1074/jbc.274.43.30764. PMID10521466.
“A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity”. Oncogene19 (50): 5736–46. (Nov 2000). doi:10.1038/sj.onc.1203948. PMID11126360.