“Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer”. Cell82 (2): 321–30. (July 1995). doi:10.1016/0092-8674(95)90319-4. PMID7628020.
“Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2”. Mutagenesis22 (3): 235–43. (May 2007). doi:10.1093/mutage/gem008. PMID17351251.
“Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC)”. Cancer Invest.20 (1): 102–9. (2002). doi:10.1081/cnv-120000371. PMID11852992.
“Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents”. J. Biol. Chem.275 (46): 36256–62. (November 2000). doi:10.1074/jbc.M005377200. PMID10954713.
“The mismatch repair system is required for S-phase checkpoint activation”. Nat. Genet.33 (1): 80–4. (January 2003). doi:10.1038/ng1052. PMID12447371.
“Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system. In vivo interaction through the C-terminal domains of hEXO1 and hMSH2 and comparative expression analysis”. Mutat. Res.460 (1): 41–52. (June 2000). doi:10.1016/S0921-8777(00)00012-4. PMID10856833.
“The interaction of DNA mismatch repair proteins with human exonuclease I”. J. Biol. Chem.276 (35): 33011–8. (August 2001). doi:10.1074/jbc.M102670200. PMID11427529.
“Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX”. Oncogene22 (6): 819–25. (February 2003). doi:10.1038/sj.onc.1206252. PMID12584560.
“Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2”. Biochem. Biophys. Res. Commun.221 (3): 722–8. (April 1996). doi:10.1006/bbrc.1996.0663. PMID8630028.
“DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture”. Molecular Cancer Research6 (4): 517–24. (April 2008). doi:10.1158/1541-7786.MCR-08-0020. PMID18403632.
“Molecular pathways: exploiting tumor-specific molecular defects in DNA repair pathways for precision cancer therapy”. Clinical Cancer Research20 (23): 5882–7. (December 2014). doi:10.1158/1078-0432.CCR-14-1165. PMID25451105.
“Aberrant DNA methylation and epigenetic inactivation of hMSH2 decrease overall survival of acute lymphoblastic leukemia patients via modulating cell cycle and apoptosis”. Asian Pac. J. Cancer Prev.15 (1): 355–62. (2014). doi:10.7314/apjcp.2014.15.1.355. PMID24528056.
“Aberrant methylation of different DNA repair genes demonstrates distinct prognostic value for esophageal cancer”. Dig. Dis. Sci.56 (10): 2992–3004. (2011). doi:10.1007/s10620-011-1774-z. PMID21674174.
“Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer”. Clin. Cancer Res.11 (15): 5410–6. (2005). doi:10.1158/1078-0432.CCR-05-0601. PMID16061855.
“Promoter methylation status of hMLH1, hMSH2, and MGMT genes in colorectal cancer associated with adenoma-carcinoma sequence”. Langenbecks Arch Surg396 (7): 1017–26. (2011). doi:10.1007/s00423-011-0812-9. PMID21706233.
“MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma”. Eur J Surg Oncol38 (4): 326–32. (2012). doi:10.1016/j.ejso.2012.01.008. PMID22265839.
“Inactivation of human mutL homolog 1 and mutS homolog 2 genes in head and neck squamous cell carcinoma tumors and leukoplakia samples by promoter hypermethylation and its relation with microsatellite instability phenotype”. Cancer109 (4): 703–12. (2007). doi:10.1002/cncr.22430. PMID17219447.
“Microsatellite instability and methylation of the DNA mismatch repair genes in head and neck cancer”. Ann. Oncol.17 (6): 995–9. (2006). doi:10.1093/annonc/mdl048. PMID16569647.
“Promoter methylation and immunohistochemical expression of hMLH1 and hMSH2 in sporadic colorectal cancer: a study from India”. Tumour Biol.35 (4): 3679–87. (2014). doi:10.1007/s13277-013-1487-3. PMID24317816.
“Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer”. Cell82 (2): 321–30. (July 1995). doi:10.1016/0092-8674(95)90319-4. PMID7628020.
“Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2”. Mutagenesis22 (3): 235–43. (May 2007). doi:10.1093/mutage/gem008. PMID17351251.
“Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC)”. Cancer Invest.20 (1): 102–9. (2002). doi:10.1081/cnv-120000371. PMID11852992.
“Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents”. J. Biol. Chem.275 (46): 36256–62. (November 2000). doi:10.1074/jbc.M005377200. PMID10954713.
“The mismatch repair system is required for S-phase checkpoint activation”. Nat. Genet.33 (1): 80–4. (January 2003). doi:10.1038/ng1052. PMID12447371.
“Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system. In vivo interaction through the C-terminal domains of hEXO1 and hMSH2 and comparative expression analysis”. Mutat. Res.460 (1): 41–52. (June 2000). doi:10.1016/S0921-8777(00)00012-4. PMID10856833.
“Human exonuclease I interacts with the mismatch repair protein hMSH2”. Cancer Res.58 (20): 4537–42. (October 1998). PMID9788596.
“The interaction of DNA mismatch repair proteins with human exonuclease I”. J. Biol. Chem.276 (35): 33011–8. (August 2001). doi:10.1074/jbc.M102670200. PMID11427529.
“Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX”. Oncogene22 (6): 819–25. (February 2003). doi:10.1038/sj.onc.1206252. PMID12584560.
“hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis”. Cancer Res.59 (4): 816–22. (February 1999). PMID10029069.
“Specific in vitro binding of p53 to the promoter region of the human mismatch repair gene hMSH2”. Biochem. Biophys. Res. Commun.221 (3): 722–8. (April 1996). doi:10.1006/bbrc.1996.0663. PMID8630028.
“DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture”. Molecular Cancer Research6 (4): 517–24. (April 2008). doi:10.1158/1541-7786.MCR-08-0020. PMID18403632.
“Molecular pathways: exploiting tumor-specific molecular defects in DNA repair pathways for precision cancer therapy”. Clinical Cancer Research20 (23): 5882–7. (December 2014). doi:10.1158/1078-0432.CCR-14-1165. PMID25451105.
“Aberrant DNA methylation and epigenetic inactivation of hMSH2 decrease overall survival of acute lymphoblastic leukemia patients via modulating cell cycle and apoptosis”. Asian Pac. J. Cancer Prev.15 (1): 355–62. (2014). doi:10.7314/apjcp.2014.15.1.355. PMID24528056.
“Aberrant methylation of different DNA repair genes demonstrates distinct prognostic value for esophageal cancer”. Dig. Dis. Sci.56 (10): 2992–3004. (2011). doi:10.1007/s10620-011-1774-z. PMID21674174.
“Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer”. Clin. Cancer Res.11 (15): 5410–6. (2005). doi:10.1158/1078-0432.CCR-05-0601. PMID16061855.
“Promoter methylation status of hMLH1, hMSH2, and MGMT genes in colorectal cancer associated with adenoma-carcinoma sequence”. Langenbecks Arch Surg396 (7): 1017–26. (2011). doi:10.1007/s00423-011-0812-9. PMID21706233.
“MSH2-deficient human cells exhibit a defect in the accurate termination of homology-directed repair of DNA double-strand breaks”. Cancer Res.63 (12): 3334–9. (2003). PMID12810667.
“MSH2 promoter hypermethylation in circulating tumor DNA is a valuable predictor of disease-free survival for patients with esophageal squamous cell carcinoma”. Eur J Surg Oncol38 (4): 326–32. (2012). doi:10.1016/j.ejso.2012.01.008. PMID22265839.
“Inactivation of human mutL homolog 1 and mutS homolog 2 genes in head and neck squamous cell carcinoma tumors and leukoplakia samples by promoter hypermethylation and its relation with microsatellite instability phenotype”. Cancer109 (4): 703–12. (2007). doi:10.1002/cncr.22430. PMID17219447.
“Microsatellite instability and methylation of the DNA mismatch repair genes in head and neck cancer”. Ann. Oncol.17 (6): 995–9. (2006). doi:10.1093/annonc/mdl048. PMID16569647.
“Microsatellite instability and promoter hypermethylation of MLH1 and MSH2 in patients with sporadic colorectal cancer”. J BUON16 (2): 265–73. (2011). PMID21766496.
“Promoter methylation and immunohistochemical expression of hMLH1 and hMSH2 in sporadic colorectal cancer: a study from India”. Tumour Biol.35 (4): 3679–87. (2014). doi:10.1007/s13277-013-1487-3. PMID24317816.