“Germline gain-of-function mutations in SOS1 cause Noonan syndrome”. Nat. Genet.39 (1): 70–4. (January 2007). doi:10.1038/ng1926. PMID17143285.
“PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects”. J. Biol. Chem.281 (10): 6785–92. (March 2006). doi:10.1074/jbc.M513068200. PMID16377799.
“Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia”. Cancer Res.64 (24): 8816–20. (December 2004). doi:10.1158/0008-5472.CAN-04-1923. PMID15604238.
“Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation”. J. Biol. Chem.275 (28): 21435–43. (July 2000). doi:10.1074/jbc.M001857200. PMID10801826.
“Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31”. FEBS Lett.450 (1–2): 77–83. (April 1999). doi:10.1016/S0014-5793(99)00446-9. PMID10350061.
“Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates”. J. Biol. Chem.273 (43): 28332–40. (October 1998). doi:10.1074/jbc.273.43.28332. PMID9774457.
“The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling”. J. Biol. Chem.272 (11): 6986–93. (March 1997). doi:10.1074/jbc.272.11.6986. PMID9054388.
“The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells”. J. Biol. Chem.274 (1): 335–44. (Jan 1999). doi:10.1074/jbc.274.1.335. PMID9867848.
“Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C”. J. Biol. Chem.270 (36): 21277–84. (Sep 1995). doi:10.1074/jbc.270.36.21277. PMID7673163.
“Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction”. Oncogene20 (16): 1929–38. (Apr 2001). doi:10.1038/sj.onc.1204290. PMID11360177.
“Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor”. J. Biol. Chem.277 (26): 23216–22. (Jun 2002). doi:10.1074/jbc.M200605200. PMID11940581.
“Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules”. Mol. Endocrinol.12 (7): 914–23. (Jul 1998). doi:10.1210/mend.12.7.0141. PMID9658397.
“Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells”. Cell. Signal.14 (10): 869–78. (October 2002). doi:10.1016/S0898-6568(02)00036-0. PMID12135708.
“Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1”. J. Biol. Chem.274 (28): 19649–54. (July 1999). doi:10.1074/jbc.274.28.19649. PMID10391903.
“A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners”. FEBS Lett.495 (3): 148–53. (April 2001). doi:10.1016/S0014-5793(01)02373-0. PMID11334882.
“SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130”. J. Biol. Chem.278 (1): 661–71. (January 2003). doi:10.1074/jbc.M210552200. PMID12403768.
“Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation”. Journal of Immunology165 (5): 2535–43. (Sep 2000). doi:10.4049/jimmunol.165.5.2535. PMID10946280.
“Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells”. J. Biol. Chem.272 (49): 30741–7. (Dec 1997). doi:10.1074/jbc.272.49.30741. PMID9388212.
“Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases”. J. Biol. Chem.272 (2): 1032–7. (January 1997). doi:10.1074/jbc.272.2.1032. PMID8995399.
“Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk”. J. Biol. Chem.275 (23): 17263–8. (Jun 2000). doi:10.1074/jbc.M000689200. PMID10747947.
“Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor”. Biochim. Biophys. Acta1448 (1): 70–6. (Nov 1998). doi:10.1016/S0167-4889(98)00120-7. PMID9824671.
“Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor”. Oncogene15 (15): 1823–32. (Oct 1997). doi:10.1038/sj.onc.1201351. PMID9362449.
“Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells”. J. Biol. Chem.274 (18): 12401–7. (Apr 1999). doi:10.1074/jbc.274.18.12401. PMID10212213.
“Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells”. J. Leukoc. Biol.65 (3): 372–80. (Mar 1999). doi:10.1002/jlb.65.3.372. PMID10080542.
“Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2”. J. Biol. Chem.271 (35): 20981–4. (Aug 1996). doi:10.1074/jbc.271.35.20981. PMID8702859.
“Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B”. Mol. Endocrinol.14 (9): 1338–50. (September 2000). doi:10.1210/me.14.9.1338. PMID10976913.
“Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins”. J. Biol. Chem.273 (26): 15906–12. (June 1998). doi:10.1074/jbc.273.26.15906. PMID9632636.
“Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein”. J. Biol. Chem.270 (32): 19151–7. (Aug 1995). doi:10.1074/jbc.270.32.19151. PMID7642582.
“The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling”. J. Biol. Chem.273 (41): 26908–14. (Oct 1998). doi:10.1074/jbc.273.41.26908. PMID9756938.
“Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis”. Blood87 (11): 4495–501. (June 1996). doi:10.1182/blood.V87.11.4495.bloodjournal87114495. PMID8639815.
“SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates”. Biochem. Biophys. Res. Commun.228 (1): 122–7. (November 1996). doi:10.1006/bbrc.1996.1626. PMID8912646.
“FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells”. Journal of Immunology165 (3): 1197–209. (Aug 2000). doi:10.4049/jimmunol.165.3.1197. PMID10903717.
“SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells”. J. Biol. Chem.275 (36): 27845–50. (September 2000). doi:10.1074/jbc.M003428200. PMID10880513.
“Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation”. Blood99 (3): 957–65. (Feb 2000). doi:10.1182/blood.V99.3.957. PMID11806999.
“Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells”. Biochem. Biophys. Res. Commun.239 (2): 412–7. (Oct 1997). doi:10.1006/bbrc.1997.7480. PMID9344843.
“Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation”. J. Biol. Chem.275 (1): 599–604. (Jan 2000). doi:10.1074/jbc.275.1.599. PMID10617656.
“Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells”. J. Biol. Chem.277 (34): 31107–14. (Aug 2002). doi:10.1074/jbc.M200156200. PMID12060651.
“Germline gain-of-function mutations in SOS1 cause Noonan syndrome”. Nat. Genet.39 (1): 70–4. (January 2007). doi:10.1038/ng1926. PMID17143285.
“PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects”. J. Biol. Chem.281 (10): 6785–92. (March 2006). doi:10.1074/jbc.M513068200. PMID16377799.
“Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia”. Cancer Res.64 (24): 8816–20. (December 2004). doi:10.1158/0008-5472.CAN-04-1923. PMID15604238.
“The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells”. J. Biol. Chem.269 (40): 25206–11. (October 1994). PMID7523381.
“Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation”. J. Biol. Chem.275 (28): 21435–43. (July 2000). doi:10.1074/jbc.M001857200. PMID10801826.
“Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31”. FEBS Lett.450 (1–2): 77–83. (April 1999). doi:10.1016/S0014-5793(99)00446-9. PMID10350061.
“Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates”. J. Biol. Chem.273 (43): 28332–40. (October 1998). doi:10.1074/jbc.273.43.28332. PMID9774457.
“The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling”. J. Biol. Chem.272 (11): 6986–93. (March 1997). doi:10.1074/jbc.272.11.6986. PMID9054388.
“The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells”. J. Biol. Chem.274 (1): 335–44. (Jan 1999). doi:10.1074/jbc.274.1.335. PMID9867848.
“Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C”. J. Biol. Chem.270 (36): 21277–84. (Sep 1995). doi:10.1074/jbc.270.36.21277. PMID7673163.
“Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction”. Oncogene20 (16): 1929–38. (Apr 2001). doi:10.1038/sj.onc.1204290. PMID11360177.
“Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor”. J. Biol. Chem.277 (26): 23216–22. (Jun 2002). doi:10.1074/jbc.M200605200. PMID11940581.
“Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules”. Mol. Endocrinol.12 (7): 914–23. (Jul 1998). doi:10.1210/mend.12.7.0141. PMID9658397.
“Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells”. Cell. Signal.14 (10): 869–78. (October 2002). doi:10.1016/S0898-6568(02)00036-0. PMID12135708.
“Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1”. J. Biol. Chem.274 (28): 19649–54. (July 1999). doi:10.1074/jbc.274.28.19649. PMID10391903.
“A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners”. FEBS Lett.495 (3): 148–53. (April 2001). doi:10.1016/S0014-5793(01)02373-0. PMID11334882.
“SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130”. J. Biol. Chem.278 (1): 661–71. (January 2003). doi:10.1074/jbc.M210552200. PMID12403768.
“Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation”. Journal of Immunology165 (5): 2535–43. (Sep 2000). doi:10.4049/jimmunol.165.5.2535. PMID10946280.
“Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells”. J. Biol. Chem.272 (49): 30741–7. (Dec 1997). doi:10.1074/jbc.272.49.30741. PMID9388212.
“Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases”. J. Biol. Chem.272 (2): 1032–7. (January 1997). doi:10.1074/jbc.272.2.1032. PMID8995399.
“Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk”. J. Biol. Chem.275 (23): 17263–8. (Jun 2000). doi:10.1074/jbc.M000689200. PMID10747947.
“Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor”. Biochim. Biophys. Acta1448 (1): 70–6. (Nov 1998). doi:10.1016/S0167-4889(98)00120-7. PMID9824671.
“Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor”. Oncogene15 (15): 1823–32. (Oct 1997). doi:10.1038/sj.onc.1201351. PMID9362449.
“Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells”. J. Biol. Chem.274 (18): 12401–7. (Apr 1999). doi:10.1074/jbc.274.18.12401. PMID10212213.
“Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells”. J. Leukoc. Biol.65 (3): 372–80. (Mar 1999). doi:10.1002/jlb.65.3.372. PMID10080542.
“Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2”. J. Biol. Chem.271 (35): 20981–4. (Aug 1996). doi:10.1074/jbc.271.35.20981. PMID8702859.
“Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B”. Mol. Endocrinol.14 (9): 1338–50. (September 2000). doi:10.1210/me.14.9.1338. PMID10976913.
“Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins”. J. Biol. Chem.273 (26): 15906–12. (June 1998). doi:10.1074/jbc.273.26.15906. PMID9632636.
“Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein”. J. Biol. Chem.270 (32): 19151–7. (Aug 1995). doi:10.1074/jbc.270.32.19151. PMID7642582.
“The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp”. J. Biol. Chem.268 (16): 11479–81. (Jun 1993). PMID8505282.
“The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling”. J. Biol. Chem.273 (41): 26908–14. (Oct 1998). doi:10.1074/jbc.273.41.26908. PMID9756938.
“Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis”. Blood87 (11): 4495–501. (June 1996). doi:10.1182/blood.V87.11.4495.bloodjournal87114495. PMID8639815.
“SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates”. Biochem. Biophys. Res. Commun.228 (1): 122–7. (November 1996). doi:10.1006/bbrc.1996.1626. PMID8912646.
“FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells”. Journal of Immunology165 (3): 1197–209. (Aug 2000). doi:10.4049/jimmunol.165.3.1197. PMID10903717.
“Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor”. J. Biol. Chem.268 (29): 21478–81. (Oct 1993). PMID7691811.
“SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells”. J. Biol. Chem.275 (36): 27845–50. (September 2000). doi:10.1074/jbc.M003428200. PMID10880513.
“Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation”. Blood99 (3): 957–65. (Feb 2000). doi:10.1182/blood.V99.3.957. PMID11806999.
“Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells”. Biochem. Biophys. Res. Commun.239 (2): 412–7. (Oct 1997). doi:10.1006/bbrc.1997.7480. PMID9344843.
“Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation”. J. Biol. Chem.275 (1): 599–604. (Jan 2000). doi:10.1074/jbc.275.1.599. PMID10617656.
“Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells”. J. Biol. Chem.277 (34): 31107–14. (Aug 2002). doi:10.1074/jbc.M200156200. PMID12060651.