H. Soda, K. Iga, C. Kitahara, and Y. Suematsu (1979). “GaInAsP/InP surface emitting injection lasers”. Jpn. J. Appl. Phys.18 (12): 2329-2330. doi:10.1143/JJAP.18.2329.
K. Iga (2000). “Surface emitting laser-its birth and generation of new optoelectronic fields”. IEEE J. Select. Top. Quantum Electron.6 (6): 1201-1215. doi:10.1109/2944.902168.
Y. Motegi, H. Soda, and K. Iga (1982). “Surface emitting GaInAsP/InP injection laser with short cavity length”. Electron. Lett.18 (11): 461-463. doi:10.1049/el:19820314.
K. Iga, S. Kinoshita, and F. Koyama (1987). “Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6 mA”. Electron. Lett.23 (3): 134-136. doi:10.1049/el:19870095.
T. Sakaguchi, F. Koyama, and K. Iga (1988). “Vertical Cavity Surface-Emitting Laser with an AlGaAs/AlAs Bragg Reflector”. Electron. Lett.24 (15): 928-929. doi:10.1049/el:19880632.
H. Uenohara, F. Koyama, and K. Iga (1989). “Application of the multi-quantum well (MQW) to a surface emitting laser”. Jpn. J. Appl. Phys.28 (4): 740-741. doi:10.1143/JJAP.28.740.
J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English (1989). “Transverse modes, waveguide dispersion and 30 ps recovery in submicron GaAs/AlAs micro-resonators”. Appl. Phys. Lett.55 (1): 22-24. doi:10.1063/1.101746.
S. W. Corzine, R. S. Geels, R. H. Yan, J. W. Scott, and L. A. Coldren (1989). “Efficient, narrow-linewidth distributed-Bragg reflector surface emitting laser with periodic gain”. Photo. Tech. Lett.1 (3): 52-54. doi:10.1109/68.87894.
R. S. Geels, and L. A. Coldren (1991). “Sub-milliamp threshold vertical-cavity laser diodes”. Appl. Phys. Lett.57: 1605-1607. doi:10.1063/1.103361.
R. A. Morgan (1995). “High-performance, producible vertical-cavity lasers for optical interconnect”. In T. P. Lee Ed.. Current trends in vertical cavity surface emitting lasers. World Scientific. pp. 65-95. doi:10.1142/2774. ISBN978-981-02-2288-8
Y. Hayashi, T. Mukaihara, N. Hatori, Ohnoki, A. Matsutani, F. Koyama, and K. Iga (1995). “Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure”. Electron. Lett.31 (7): 560-561. doi:10.1049/el:19950391.
J. M. Dallesasse, N. Holonyak Jr., A. R. Sugg, T. A. Richard, and N. El-Zein (1990). “Hydrolyzation-oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices”. Appl. Phys. Lett.57 (26): 2844-2846. doi:10.1063/1.103759.
N. Yokouchi, T. Miyamoto, T, Uchida, Y, Inaba, F. Koyama, and K. Iga (1992). “40 Å continuous tuning of a GaInAsP/InP vertical-cavity surface-emitting laser using an external mirror”. IEEE Photon. Technol. Lett.4 (7): 701-703. doi:10.1109/68.145243.
M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain (1995). “Tunable micromachined vertical cavity surface emitting laser”. Electron. Lett.31 (19): 1671-1672. doi:10.1049/el:19951159.
E. Ho, F. Koyama, and K. Iga (1990). “Effective reflectivity from self-imaging in a Talbot cavity and its effect on the threshold of a finite 2-D surface emitting laser array”. Appl. Opt.29 (34): 5080-5085. doi:10.1364/AO.29.005080. PMID20577514.
T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga (1993). “Near room temperature continuous wave lasing characteristics of GalnAsP/lnP surface emitting laser”. Electron. Lett.29 (10): 913-914. doi:10.1049/el:19930609.
K. Iga (2018). “Forty years of VCSEL: Invention and innovation”. Jpn J. Appl. Phys.57 (8S2): 1-7. doi:10.7567/JJAP.57.08PA01.
E. Towe, R. F. Leheny, and A. Yang (2000). “A historical perspective of the development of the vertical-cavity surface-emitting laser”. IEEE Journal on Selected Topics in Quantum Electronics6 (6): 1458–1464. doi:10.1109/2944.902201.
C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee (1991). “Multiple wavelength tunable surface-emitting laser arrays”. IEEE J, Quantum Electron.27 (6): 1368-1376. doi:10.1109/3.89953.
Wang B., W. V. Sorin, P. Rosenberg, L. Kiyama, S. Mathai, and M. R. T. Tan (2020). “4x112 Gbps/Fiber CWDM VCSEL arrays for co-packaged interconnects”. J. Lightwave Tech.38 (13): 3439-3444. doi:10.1109/JLT.2020.2980986.
Hassan M. A., M. Nakahama, and F. Koyama (2020). “High-power, quasi-single-mode vertical-cavity surface-emitting laser with near-diffraction-limited and low-divergence beam”. Japanese Journal of Applied Physics59 (9): 090904-1-4. doi:10.35848/1347-4065/ababb6.
E. Ho, F. Koyama, and K. Iga (1990). “Effective reflectivity from self-imaging in a Talbot cavity and its effect on the threshold of a finite 2-D surface emitting laser array”. Appl. Opt.29 (34): 5080-5085. doi:10.1364/AO.29.005080. PMID20577514.