Baer, R.; Livshits, E.; Salzner, U. (2010). “"Tuned" Range-separated hybrids in density functional theory”. Annual Review of Physical Chemistry61: 85–109. doi:10.1146/annurev.physchem.012809.103321. hdl:11693/22326. PMID20055678.Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). “Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method”. Physical Review Letters105 (26): 266802. arXiv:1006.5420. Bibcode: 2010PhRvL.105z6802S. doi:10.1103/PhysRevLett.105.266802. PMID21231698. Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012). “Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals”. Journal of Chemical Theory and Computation8 (5): 1515–31. doi:10.1021/ct2009363. PMID26593646.
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi (2012). “Curvature and frontier orbital energies in density functional theory”. The Journal of Physical Chemistry Letters3 (24): 3740–4. arXiv:1208.1496. doi:10.1021/jz3015937. PMID26291104.
Politzer, Peter; Abu-Awwad, Fakher (1998). “A comparative analysis of Hartree–Fock and Kohn–Sham orbital energies”. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)99 (2): 83–87. doi:10.1007/s002140050307.
Hamel, Sebastien; Duffy, Patrick; Casida, Mark E.; Salahub, Dennis R. (2002). “Kohn–Sham orbitals and orbital energies: fictitious constructs but good approximations all the same”. Journal of Electron Spectroscopy and Related Phenomena123 (2–3): 345–363. doi:10.1016/S0368-2048(02)00032-4.
Plakhutin, B. N.; Gorelik, E. V.; Breslavskaya, N. N. (2006). “Koopmans' theorem in the ROHF method: Canonical form for the Hartree-Fock Hamiltonian”. The Journal of Chemical Physics125 (20): 204110. Bibcode: 2006JChPh.125t4110P. doi:10.1063/1.2393223. PMID17144693.
Plakhutin, Boris N.; Davidson, Ernest R. (2009). “Koopmans' Theorem in the Restricted Open-Shell Hartree−Fock Method. 1. A Variational Approach†”. The Journal of Physical Chemistry A113 (45): 12386–12395. Bibcode: 2009JPCA..11312386P. doi:10.1021/jp9002593. PMID19459641.
Almbladh, C. -O.; von Barth, U. (1985). “Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues”. Physical Review B31 (6): 3231–3244. Bibcode: 1985PhRvB..31.3231A. doi:10.1103/PhysRevB.31.3231. PMID9936207.
Levy, Mel; Perdew, John P; Sahni, Viraht (1984). “Exact differential equation for the density and ionization energy of a many-particle system”. Physical Review A30 (5): 2745. Bibcode: 1984PhRvA..30.2745L. doi:10.1103/PhysRevA.30.2745.
Baer, R.; Livshits, E.; Salzner, U. (2010). “"Tuned" Range-separated hybrids in density functional theory”. Annual Review of Physical Chemistry61: 85–109. doi:10.1146/annurev.physchem.012809.103321. hdl:11693/22326. PMID20055678.Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). “Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method”. Physical Review Letters105 (26): 266802. arXiv:1006.5420. Bibcode: 2010PhRvL.105z6802S. doi:10.1103/PhysRevLett.105.266802. PMID21231698. Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012). “Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals”. Journal of Chemical Theory and Computation8 (5): 1515–31. doi:10.1021/ct2009363. PMID26593646.
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi (2012). “Curvature and frontier orbital energies in density functional theory”. The Journal of Physical Chemistry Letters3 (24): 3740–4. arXiv:1208.1496. doi:10.1021/jz3015937. PMID26291104.
Andrejkovics, I; Nagy, Á (1998). “Excitation energies in density functional theory: Comparison of several methods for the H2O, N2, CO and C2H4 molecules”. Chemical Physics Letters296 (5–6): 489. Bibcode: 1998CPL...296..489A. doi:10.1016/S0009-2614(98)01075-6.
Perdew, John P; Levy, Mel (1983). “Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities”. Physical Review Letters51 (20): 1884. Bibcode: 1983PhRvL..51.1884P. doi:10.1103/PhysRevLett.51.1884.
Baer, R.; Livshits, E.; Salzner, U. (2010). “"Tuned" Range-separated hybrids in density functional theory”. Annual Review of Physical Chemistry61: 85–109. doi:10.1146/annurev.physchem.012809.103321. hdl:11693/22326. PMID20055678.Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). “Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method”. Physical Review Letters105 (26): 266802. arXiv:1006.5420. Bibcode: 2010PhRvL.105z6802S. doi:10.1103/PhysRevLett.105.266802. PMID21231698. Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012). “Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals”. Journal of Chemical Theory and Computation8 (5): 1515–31. doi:10.1021/ct2009363. PMID26593646.
Plakhutin, B. N.; Gorelik, E. V.; Breslavskaya, N. N. (2006). “Koopmans' theorem in the ROHF method: Canonical form for the Hartree-Fock Hamiltonian”. The Journal of Chemical Physics125 (20): 204110. Bibcode: 2006JChPh.125t4110P. doi:10.1063/1.2393223. PMID17144693.
Plakhutin, Boris N.; Davidson, Ernest R. (2009). “Koopmans' Theorem in the Restricted Open-Shell Hartree−Fock Method. 1. A Variational Approach†”. The Journal of Physical Chemistry A113 (45): 12386–12395. Bibcode: 2009JPCA..11312386P. doi:10.1021/jp9002593. PMID19459641.
Almbladh, C. -O.; von Barth, U. (1985). “Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues”. Physical Review B31 (6): 3231–3244. Bibcode: 1985PhRvB..31.3231A. doi:10.1103/PhysRevB.31.3231. PMID9936207.
Levy, Mel; Perdew, John P; Sahni, Viraht (1984). “Exact differential equation for the density and ionization energy of a many-particle system”. Physical Review A30 (5): 2745. Bibcode: 1984PhRvA..30.2745L. doi:10.1103/PhysRevA.30.2745.
Baer, R.; Livshits, E.; Salzner, U. (2010). “"Tuned" Range-separated hybrids in density functional theory”. Annual Review of Physical Chemistry61: 85–109. doi:10.1146/annurev.physchem.012809.103321. hdl:11693/22326. PMID20055678.Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). “Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method”. Physical Review Letters105 (26): 266802. arXiv:1006.5420. Bibcode: 2010PhRvL.105z6802S. doi:10.1103/PhysRevLett.105.266802. PMID21231698. Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012). “Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals”. Journal of Chemical Theory and Computation8 (5): 1515–31. doi:10.1021/ct2009363. PMID26593646.
Andrejkovics, I; Nagy, Á (1998). “Excitation energies in density functional theory: Comparison of several methods for the H2O, N2, CO and C2H4 molecules”. Chemical Physics Letters296 (5–6): 489. Bibcode: 1998CPL...296..489A. doi:10.1016/S0009-2614(98)01075-6.
Perdew, John P; Levy, Mel (1983). “Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities”. Physical Review Letters51 (20): 1884. Bibcode: 1983PhRvL..51.1884P. doi:10.1103/PhysRevLett.51.1884.
Plakhutin, B. N.; Gorelik, E. V.; Breslavskaya, N. N. (2006). “Koopmans' theorem in the ROHF method: Canonical form for the Hartree-Fock Hamiltonian”. The Journal of Chemical Physics125 (20): 204110. Bibcode: 2006JChPh.125t4110P. doi:10.1063/1.2393223. PMID17144693.
Plakhutin, Boris N.; Davidson, Ernest R. (2009). “Koopmans' Theorem in the Restricted Open-Shell Hartree−Fock Method. 1. A Variational Approach†”. The Journal of Physical Chemistry A113 (45): 12386–12395. Bibcode: 2009JPCA..11312386P. doi:10.1021/jp9002593. PMID19459641.
Almbladh, C. -O.; von Barth, U. (1985). “Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues”. Physical Review B31 (6): 3231–3244. Bibcode: 1985PhRvB..31.3231A. doi:10.1103/PhysRevB.31.3231. PMID9936207.
Baer, R.; Livshits, E.; Salzner, U. (2010). “"Tuned" Range-separated hybrids in density functional theory”. Annual Review of Physical Chemistry61: 85–109. doi:10.1146/annurev.physchem.012809.103321. hdl:11693/22326. PMID20055678.Stein, T.; Eisenberg, H.; Kronik, L.; Baer, R. (2010). “Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method”. Physical Review Letters105 (26): 266802. arXiv:1006.5420. Bibcode: 2010PhRvL.105z6802S. doi:10.1103/PhysRevLett.105.266802. PMID21231698. Kornik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. (2012). “Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals”. Journal of Chemical Theory and Computation8 (5): 1515–31. doi:10.1021/ct2009363. PMID26593646.
Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi (2012). “Curvature and frontier orbital energies in density functional theory”. The Journal of Physical Chemistry Letters3 (24): 3740–4. arXiv:1208.1496. doi:10.1021/jz3015937. PMID26291104.