PDB: 1FPY; “The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition”. Biochemistry40 (7): 1903–12. (February 2001). doi:10.1021/bi002438h. PMID11329256.
“Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO”. Cold Spring Harb. Symp. Quant. Biol.52: 483–90. (1987). doi:10.1101/sqb.1987.052.01.055. PMID2900091.
“Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes”. Biochemistry33 (3): 675–81. (Jan 1994). doi:10.1021/bi00169a007. PMID7904828.
“Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design”. J Mol Biol375 (1): 317–28. (Jan 2008). doi:10.1016/j.jmb.2007.10.029. PMID18005987.
“Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli”. Biochemistry9 (3): 633–49. (Feb 1970). doi:10.1021/bi00805a025. PMID4906326.
“Metal ion requirement by glutamine synthetase of Escherichia coli in catalysis of gamma-glutamyl transfer”. Arch Biochem Biophys166 (1): 102–24. (Jan 1975). doi:10.1016/0003-9861(75)90370-7. PMID235885.
“Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes”. J. Mol. Evol.29 (5): 422–8. (November 1989). doi:10.1007/BF02602912. PMID2575672.
“Evolutionary relationships of bacterial and archaeal glutamine synthetase genes”. J. Mol. Evol.38 (6): 566–76. (June 1994). doi:10.1007/BF00175876. PMID7916055.
“Three-dimensional structure of a type III glutamine synthetase by single-particle reconstruction”. J. Mol. Biol.361 (4): 796–810. (August 2006). doi:10.1016/j.jmb.2006.06.026. PMID16879836.
“Evidence of covalent modification of glutamine synthetase in the purple sulfur bacterium”. FEMS Microbiology Letters122 (1–2): 115–119. (1994). doi:10.1111/j.1574-6968.1994.tb07153.x.
“Purification and characterization of glutamine synthetase from Clostridium pasteurianum”. Biochemistry25 (7): 1589–99. (Apr 1986). doi:10.1021/bi00355a021. PMID2871863.
Bolay, Paul; Muro-Pastor, M.; Florencio, Francisco; Klähn, Stephan (27 October 2018). “The Distinctive Regulation of Cyanobacterial Glutamine Synthetase”. Life8 (4): 52. doi:10.3390/life8040052.
“The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7”. Proceedings of the National Academy of Sciences of the United States of America112 (45): E6243-52. (November 2015). doi:10.1073/pnas.1508412112. PMID26494284.
“A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria”. Nucleic Acids Research. (August 2018). doi:10.1093/nar/gky709. PMID30085248.
PDB: 1FPY; “The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition”. Biochemistry40 (7): 1903–12. (February 2001). doi:10.1021/bi002438h. PMID11329256.
PDB: 2GLS; “Refined atomic model of glutamine synthetase at 3.5 A resolution”. J. Biol. Chem.264 (30): 17681–90. (October 1989). PMID2572586.
“Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO”. Cold Spring Harb. Symp. Quant. Biol.52: 483–90. (1987). doi:10.1101/sqb.1987.052.01.055. PMID2900091.
“Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes”. Biochemistry33 (3): 675–81. (Jan 1994). doi:10.1021/bi00169a007. PMID7904828.
“Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design”. J Mol Biol375 (1): 317–28. (Jan 2008). doi:10.1016/j.jmb.2007.10.029. PMID18005987.
“Some effects of adenylylation on the biosynthetic properties of the glutamine synthetase from Escherichia coli”. Biochemistry9 (3): 633–49. (Feb 1970). doi:10.1021/bi00805a025. PMID4906326.
“Metal ion requirement by glutamine synthetase of Escherichia coli in catalysis of gamma-glutamyl transfer”. Arch Biochem Biophys166 (1): 102–24. (Jan 1975). doi:10.1016/0003-9861(75)90370-7. PMID235885.
“Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes”. J. Mol. Evol.29 (5): 422–8. (November 1989). doi:10.1007/BF02602912. PMID2575672.
“Evolutionary relationships of bacterial and archaeal glutamine synthetase genes”. J. Mol. Evol.38 (6): 566–76. (June 1994). doi:10.1007/BF00175876. PMID7916055.
“Three-dimensional structure of a type III glutamine synthetase by single-particle reconstruction”. J. Mol. Biol.361 (4): 796–810. (August 2006). doi:10.1016/j.jmb.2006.06.026. PMID16879836.
“Purification and characterization of glutamine synthetase from Clostridium pasteurianum”. Biochemistry25 (7): 1589–99. (Apr 1986). doi:10.1021/bi00355a021. PMID2871863.
“Nitrogen control in bacteria”. Microbiological Reviews59 (4): 604–22. (December 1995). PMID8531888.
“A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated”. Proceedings of the National Academy of Sciences of the United States of America78 (6): 3393–7. (June 1981). PMID6115380.
“NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators”. Molecular Microbiology6 (13): 1853–9. (July 1992). PMID1630321.
“Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability”. Journal of Bacteriology179 (8): 2678–89. (April 1997). PMID9098067.
“Glutamine synthetase inactivation by protein-protein interaction”. Proceedings of the National Academy of Sciences of the United States of America96 (13): 7161–6. (June 1999). PMID10377385.
“NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803”. Molecular Microbiology35 (5): 1192–201. (March 2000). PMID10712699.
“The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7”. Proceedings of the National Academy of Sciences of the United States of America112 (45): E6243-52. (November 2015). doi:10.1073/pnas.1508412112. PMID26494284.
“A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria”. Nucleic Acids Research. (August 2018). doi:10.1093/nar/gky709. PMID30085248.
PDB: 1FPY; “The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition”. Biochemistry40 (7): 1903–12. (February 2001). doi:10.1021/bi002438h. PMID11329256.
PDB: 2GLS; “Refined atomic model of glutamine synthetase at 3.5 A resolution”. J. Biol. Chem.264 (30): 17681–90. (October 1989). PMID2572586.
Goodsell DS (2002年6月). “Glutamine Synthetase”. Molecule of the month. RCSB Protein Data Bank. 2010年5月8日閲覧。